912 resultados para Pedestal elimination
Resumo:
Lidocaine is a widely used local anaesthetic agent that also has anti-arrhythmic effects. It is classified as a type Ib anti-arrhythmic agent and is used to treat ventricular tachycardia or ventricular fibrillation. Lidocaine is eliminated mainly by metabolism, and less than 5% is excreted unchanged in urine. Lidocaine is a drug with a medium to high extraction ratio, and its bioavailability is about 30%. Based on in vitro studies, the earlier understanding was that CYP3A4 is the major cytochrome P450 (CYP) enzyme involved in the metabolism of lidocaine. When this work was initiated, there was little human data on the effect of inhibitors of CYP enzymes on the pharmacokinetics of lidocaine. Because lidocaine has a low therapeutic index, medications that significantly inhibit lidocaine clearance (CL) could increase the risk of toxicity. These studies investigated the effects of some clinically important CYP1A2 and CYP3A4 inhibitors on the pharmacokinetics of lidocaine administered by different routes. All of the studies were randomized, double-blind, placebo-controlled cross-over studies in two or three phases in healthy volunteers. Pretreatment with clinically relevant doses of CYP3A4 inhibitors erythromycin and itraconazole or CYP1A2 inhibitors fluvoxamine and ciprofloxacin was followed by a single dose of lidocaine. Blood samples were collected to determine the pharmacokinetic parameters of lidocaine and its main metabolites monoethylglycinexylidide (MEGX) and 3-hydroxylidocaine (3-OH-lidocaine). Itraconazole and erythromycin had virtually no effect on the pharmacokinetics of intravenous lidocaine, but erythromycin slightly prolonged the elimination half-life (t½) of lidocaine (Study I). When lidocaine was taken orally, both erythromycin and itraconazole increased the peak concentration (Cmax) and the area under the concentration-time curve (AUC) of lidocaine by 40-70% (Study II). Compared with placebo and itraconazole, erythromycin increased the Cmax and the AUC of MEGX by 40-70% when lidocaine was given intravenously or orally (Studies I and II). The pharmacokinetics of inhaled lidocaine was unaffected by concomitant administration of itraconazole (Study III). Fluvoxamine reduced the CL of intravenous lidocaine by 41% and prolonged the t½ of lidocaine by 35%. The mean AUC of lidocaine increased 1.7-fold (Study IV). After oral administration of lidocaine, the mean AUC of lidocaine in-creased 3-fold and the Cmax 2.2-fold by fluvoxamine (Study V). During the pretreatment with fluvoxamine combined with erythromycin, the CL of intravenous lidocaine was 53% smaller than during placebo and 21% smaller than during fluvoxamine alone. The t½ of lidocaine was significantly longer during the combination phase than during the placebo or fluvoxamine phase. The mean AUC of intravenous lidocaine increased 2.3-fold and the Cmax 1.4-fold (Study IV). After oral administration of lidocaine, the mean AUC of lidocaine increased 3.6-fold and the Cmax 2.5-fold by concomitant fluvoxamine and erythromycin. The t½ of oral lidocaine was significantly longer during the combination phase than during the placebo (Study V). When lidocaine was given intravenously, the combination of fluvoxamine and erythromycin prolonged the t½ of MEGX by 59% (Study IV). Compared with placebo, ciprofloxacin increased the mean Cmax and AUC of intravenous lidocaine by 12% and 26%, respectively. The mean plasma CL of lidocaine was reduced by 22% and its t½ prolonged by 7% (Study VI). These studies clarify the principal role of CYP1A2 and suggest only a modest role of CYP3A4 in the elimination of lidocaine in vivo. The inhibition of CYP1A2 by fluvoxamine considerably reduces the elimination of lidocaine. Concomitant use of fluvoxamine and the CYP3A4 inhibitor erythromycin further increases lidocaine concentrations. The clinical implication of this work is that clinicians should be aware of the potentially increased toxicity of lidocaine when used together with inhibitors of CYP1A2 and particularly with the combination of drugs inhibiting both CYP1A2 and CYP3A4 enzymes.
Resumo:
Useiden lääkkeiden yhtäaikainen käyttö on nykyään hyvin yleistä, mikä lisää lääkeaineiden haitallisten yhteisvaikutusten riskiä. Lääkeaineiden poistumisessa elimistöstä ovat tärkeässä osassa niitä hajottavat (metaboloivat) maksan sytokromi P450 (CYP) entsyymit. Vasta aivan viime vuosina on havaittu, että CYP2C8-entsyymillä voi olla tärkeä merkitys mm. lääkeaineyhteisvaikutuksissa. Eräät lääkeaineet voivat estää (inhiboida) CYP2C8-entsyymin kautta tapahtuvaa metaboliaa. Tässä työssä selvitettiin CYP2C8-entsyymiä estävien lääkkeiden vaikutusta sellaisten lääkeaineiden pitoisuuksiin, joiden aikaisemman tiedon perusteella arveltiin metaboloituvan CYP2C8-välitteisesti. Näiden lääkeaineiden metaboliaa tutkittiin myös koeputkiolosuhteissa (in vitro -menetelmillä). Lisäksi CYP2C8-entsyymiä estävän lipidilääke gemfibrotsiilin yhteisvaikutusmekanismia tutkittiin selvittämällä interaktion säilymistä koehenkilöillä gemfibrotsiilin annostelun lopettamisen jälkeen. Yhteisvaikutuksia tutkittiin terveillä vapaaehtoisilla koehenkilöillä käyttäen vaihtovuoroista koeasetelmaa. Koehenkilöille annettiin CYP2C8-entsyymiä estävää lääkitystä muutaman päivän ajan ja tämän jälkeen kerta-annos tutkimuslääkettä. Koehenkilöiltä otettiin useita verinäytteitä, joista määritettiin lääkepitoisuudet nestekromatografisilla tai massaspektrometrisillä menetelmillä. Gemfibrotsiili nosti ripulilääke loperamidin pitoisuudet keskimäärin kaksinkertaiseksi. Gemfibrotsiili lisäsi, mutta vain hieman, kipulääke ibuprofeenin pitoisuuksia, eikä sillä ollut mitään vaikutusta unilääke tsopiklonin pitoisuuksiin toisin kuin aiemman kirjallisuuden perusteella oli odotettavissa. Toinen CYP2C8-estäjä, mikrobilääke trimetopriimi, nosti diabeteslääke pioglitatsonin pitoisuuksia keskimäärin noin 40 %. Gemfibrotsiili nosti diabeteslääke repaglinidin pitoisuudet 7-kertaiseksi ja tämä yhteisvaikutus säilyi lähes yhtä voimakkaana vielä 12 tunnin päähän viimeisestä gemfibrotsiiliannoksesta. Tehdyt havainnot ovat käytännön lääkehoidon kannalta merkittäviä ja ne selvittävät CYP2C8-entsyymin merkitystä useiden lääkkeiden metaboliassa. Gemfibrotsiilin tai muiden CYP2C8-entsyymiä estävien lääkkeiden yhteiskäyttö loperamidin kanssa voi lisätä loperamidin tehoa tai haittavaikutuksia. Toisaalta CYP2C8-entsyymin osuus tsopiklonin ja ibuprofeenin metaboliassa näyttää olevan pieni. Trimetopriimi nosti kohtalaisesti pioglitatsonin pitoisuuksia, ja kyseisten lääkkeiden yhteiskäyttö voi lisätä pioglitatsonin annosriippuvaisia haittavaikutuksia. Gemfibrotsiili-repaglinidi-yhteisvaikutuksen päämekanismi in vivo näyttää olevan CYP2C8-entsyymin palautumaton esto. Tämän vuoksi gemfibrotsiilin estovaikutus ja yhteisvaikutusriski säilyvät pitkään gemfibrotsiilin annostelun lopettamisen jälkeen, mikä tulee ottaa huomioon käytettäessä sitä CYP2C8-välitteisesti metaboloituvien lääkkeiden kanssa.
Resumo:
Regular electrical activation waves in cardiac tissue lead to the rhythmic contraction and expansion of the heart that ensures blood supply to the whole body. Irregularities in the propagation of these activation waves can result in cardiac arrhythmias, like ventricular tachycardia (VT) and ventricular fibrillation (VF), which are major causes of death in the industrialised world. Indeed there is growing consensus that spiral or scroll waves of electrical activation in cardiac tissue are associated with VT, whereas, when these waves break to yield spiral- or scroll-wave turbulence, VT develops into life-threatening VF: in the absence of medical intervention, this makes the heart incapable of pumping blood and a patient dies in roughly two-and-a-half minutes after the initiation of VF. Thus studies of spiral- and scroll-wave dynamics in cardiac tissue pose important challenges for in vivo and in vitro experimental studies and for in silico numerical studies of mathematical models for cardiac tissue. A major goal here is to develop low-amplitude defibrillation schemes for the elimination of VT and VF, especially in the presence of inhomogeneities that occur commonly in cardiac tissue. We present a detailed and systematic study of spiral- and scroll-wave turbulence and spatiotemporal chaos in four mathematical models for cardiac tissue, namely, the Panfilov, Luo-Rudy phase 1 (LRI), reduced Priebe-Beuckelmann (RPB) models, and the model of ten Tusscher, Noble, Noble, and Panfilov (TNNP). In particular, we use extensive numerical simulations to elucidate the interaction of spiral and scroll waves in these models with conduction and ionic inhomogeneities; we also examine the suppression of spiral- and scroll-wave turbulence by low-amplitude control pulses. Our central qualitative result is that, in all these models, the dynamics of such spiral waves depends very sensitively on such inhomogeneities. We also study two types of control chemes that have been suggested for the control of spiral turbulence, via low amplitude current pulses, in such mathematical models for cardiac tissue; our investigations here are designed to examine the efficacy of such control schemes in the presence of inhomogeneities. We find that a local pulsing scheme does not suppress spiral turbulence in the presence of inhomogeneities; but a scheme that uses control pulses on a spatially extended mesh is more successful in the elimination of spiral turbulence. We discuss the theoretical and experimental implications of our study that have a direct bearing on defibrillation, the control of life-threatening cardiac arrhythmias such as ventricular fibrillation.
Resumo:
Pioglitazone is a thiazolidinedione compound used in the treatment of type 2 diabetes. It has been reported to be metabolised by multiple cytochrome P450 (CYP) enzymes, including CYP2C8, CYP2C9 and CYP3A4 in vitro. The aims of this work were to identify the CYP enzymes mainly responsible for the elimination of pioglitazone in order to evaluate its potential for in vivo drug interactions, and to investigate the effects of CYP2C8- and CYP3A4-inhibiting drugs (gemfibrozil, montelukast, zafirlukast and itraconazole) on the pharmacokinetics of pioglitazone in healthy volunteers. In addition, the effect of induction of CYP enzymes on the pharmacokinetics of pioglitazone in healthy volunteers was investigated, with rifampicin as a model inducer. Finally, the effect of pioglitazone on CYP2C8 and CYP3A enzyme activity was examined in healthy volunteers using repaglinide as a model substrate. Study I was conducted in vitro using pooled human liver microsomes (HLM) and human recombinant CYP isoforms. Studies II to V were randomised, placebo-controlled cross-over studies with 2-4 phases each. A total of 10-12 healthy volunteers participated in each study. Pretreatment with clinically relevant doses with the inhibitor or inducer was followed by a single dose of pioglitazone or repaglinide, whereafter blood and urine samples were collected for the determination of drug concentrations. In vitro, the elimination of pioglitazone (1 µM) by HLM was markedly inhibited, in particular by CYP2C8 inhibitors, but also by CYP3A4 inhibitors. Of the recombinant CYP isoforms, CYP2C8 metabolised pioglitazone markedly, and CYP3A4 also had a significant effect. All of the tested CYP2C8 inhibitors (montelukast, zafirlukast, trimethoprim and gemfibrozil) concentration-dependently inhibited pioglitazone metabolism in HLM. In humans, gemfibrozil raised the area under the plasma concentration-time curve (AUC) of pioglitazone 3.2-fold (P < 0.001) and prolonged its elimination half-life (t½) from 8.3 to 22.7 hours (P < 0.001), but had no significant effect on its peak concentration (Cmax) compared with placebo. Gemfibrozil also increased the excretion of pioglitazone into urine and reduced the ratios of the active metabolites M-IV and M-III to pioglitazone in plasma and urine. Itraconazole had no significant effect on the pharmacokinetics of pioglitazone and did not alter the effect of gemfibrozil on pioglitazone pharmacokinetics. Rifampicin decreased the AUC of pioglitazone by 54% (P < 0.001) and shortened its dominant t½ from 4.9 to 2.3 hours (P < 0.001). No significant effect on Cmax was observed. Rifampicin also decreased the AUC of the metabolites M-IV and M-III, shortened their t½ and increased the ratios of the metabolite to pioglitazone in plasma and urine. Montelukast and zafirlukast did not affect the pharmacokinetics of pioglitazone. The pharmacokinetics of repaglinide remained unaffected by pioglitazone. These studies demonstrate the principal role of CYP2C8 in the metabolism of pioglitazone in humans. Gemfibrozil, an inhibitor of CYP2C8, increases and rifampicin, an inducer of CYP2C8 and other CYP enzymes, decreases the plasma concentrations of pioglitazone, which can necessitate blood glucose monitoring and adjustment of pioglitazone dosage. Montelukast and zafirlukast had no effects on the pharmacokinetics of pioglitazone, indicating that their inhibitory effect on CYP2C8 is negligible in vivo. Pioglitazone did not increase the plasma concentrations of repaglinide, indicating that its inhibitory effect on CYP2C8 and CYP3A4 is very weak in vivo.
Resumo:
Several studies link the consumption of whole-grain products to a lowered risk of chronic diseases, such as certain types of cancer, type II diabetes, and cardiovascular diseases. However, the final conclusions of the exact protective mechanisms remain unclear, partly due to a lack of a suitable biomarker for the whole-grain cereals intake. Alkylresorcinols (AR) are phenolic lipids abundant in the outer parts of wheat and rye grains usually with homologues of C15:0- C25:0 alkyl chains, and are suggested to function as whole-grain biomarkers. Mammalian lignan enterolactone has also previously been studied as a potential whole-grain biomarker. In the present work a quantified gas chromatography-mass spectrometry method for the analysis of AR in plasma, erythrocytes, and lipoproteins was developed. The method was used to determine human and pig plasma AR concentrations after the intake of whole-grain wheat and rye products compared to low-fibre wheat bread diets to assess the usability of AR as biomarkers of whole-grain intake. AR plasma concentrations were compared to serum ENL concentrations. AR absorption and elimination kinetics were investigated in a pig model. AR occurrence in human erythrocyte membranes and plasma lipoproteins were determined, and the distribution of AR in blood was evaluated. Plasma AR seem to be absorbed via the lymphatic system from the small intestine, like many other lipophilic compounds. Their apparent elimination half-life is relatively short and is similar to that of tocopherols, which have a similar chemical structure. Plasma AR concentrations increased significantly after a one- to eight-week intake of whole-grain wheat and further on with whole-grain rye bread. The concentrations were also higher after habitual Finnish diet compared to diet with low-fibre bread. Inter-individual variation after a one-week intake of the same amount of bread was high, but the mean plasma AR concentrations increased with increasing AR intake. AR are incorporated into erythrocyte membranes and plasma lipoproteins, and VLDL and HDL were the main AR carriers in human plasma. Based on these studies, plasma AR could function as specific biomarkers of dietary whole-grain products. AR are exclusively found in whole-grains and are more suitable as specific biomarkers of whole-grain intake than previously investigated mammalian lignan enterolactone, that is formed from several plants other than cereals in the diet. Plasma AR C17:0/C21:0 -ratio could distinguish whether whole-grain products in the diet are mainly wheat or rye. AR could be used in epidemiological studies to determine whole-grain intake and to better assess the role of whole-grains in disease prevention.
Resumo:
Acute renal failure (ARF) is a clinical syndrome characterized by rapidly decreasing glomerular filtration rate, which results in disturbances in electrolyte- and acid-base homeostasis, derangement of extracellular fluid volume, and retention of nitrogenous waste products, and is often associated with decreased urine output. ARF affects about 5-25% of patients admitted to intensive care units (ICUs), and is linked to high mortality and morbidity rates. In this thesis outcome of critically ill patients with ARF and factors related to outcome were evaluated. A total of 1662 patients from two ICUs and one acute dialysis unit in Helsinki University Hospital were included. In study I the prevalence of ARF was calculated and classified according to two ARF-specific scoring methods, the RIFLE classification and the classification created by Bellomo et al. (2001). Study II evaluated monocyte human histocompatibility leukocyte antigen-DR (HLA-DR) expression and plasma levels of one proinflammatory (interleukin (IL) 6) and two anti-inflammatory (IL-8 and IL-10) cytokines in predicting survival of critically ill ARF patients. Study III investigated serum cystatin C as a marker of renal function in ARF and its power in predicting survival of critically ill ARF patients. Study IV evaluated the effect of intermittent hemodiafiltration (HDF) on myoglobin elimination from plasma in severe rhabdomyolysis. Study V assessed long-term survival and health-related quality of life (HRQoL) in ARF patients. Neither of the ARF-specific scoring methods presented good discriminative power regarding hospital mortality. The maximum RIFLE score for the first three days in the ICU was an independent predictor of hospital mortality. As a marker of renal dysfunction, serum cystatin C failed to show benefit compared with plasma creatinine in detecting ARF or predicting patient survival. Neither cystatin C nor plasma concentrations of IL-6, IL-8, and IL-10, nor monocyte HLA-DR expression were clinically useful in predicting mortality in ARF patients. HDF may be used to clear myoglobin from plasma in rhabdomyolysis, especially if the alkalization of diuresis does not succeed. The long-term survival of patients with ARF was found to be poor. The HRQoL of those who survive is lower than that of the age- and gender-matched general population.
Resumo:
Rest tremor, rigidity, and slowness of movements-considered to be mainly due to markedly reduced levels of dopamine (DA) in the basal ganglia-are characteristic motor symptoms of Parkinson's disease (PD). Although there is yet no cure for this illness, several drugs can alleviate the motor symptoms. Among these symptomatic therapies, L-dopa is the most effective. As a precursor to DA, it is able to replace the loss of DA in the basal ganglia. In the long run L-dopa has, however, disadvantages. Motor response complications, such as shortening of the duration of drug effect ("wearing-off"), develop in many patients. In addition, extensive peripheral metabolism of L-dopa by aromatic amino acid decarboxylase and catechol-O-methyltransferase (COMT) results in its short half-life, low bioavailability, and reduced efficacy. Entacapone, a nitrocatechol-structured compound, is a highly selective, reversible, and orally active inhibitor of COMT. It increases the bioavailability of L-dopa by reducing its peripheral elimination rate. Entacapone extends the duration of clinical response to each L-dopa dose in PD patients with wearing-off fluctuations. COMT is important in the metabolism of catecholamines. Its inhibition could, therefore, theoretically lead to adverse cardiovascular reactions, especially in circumstances of enhanced sympathetic activity (physical exercise). PD patients may be particularly vulnerable to such effects due to high prevalence of cardiovascular autonomic dysfunction, and the common use of monoamine oxidase B inhibitor selegiline, another drug with effects on catecholamine metabolism. Both entacapone and selegiline enhance L-dopa's clinical effect. Their co-administration may therefore lead to pharmacodynamic interactions, either beneficial (improved L-dopa efficacy) or harmful (increased dyskinesia). We investigated the effects of repeated dosing (3-5 daily doses for 1-2 weeks) of entacapone 200 mg administered either with or without selegiline (10 mg once daily), on several safety and efficacy parameters in 39 L-dopa-treated patients with mild to moderate PD in three double-blind placebo-controlled, crossover studies. In the first two, the cardiovascular, clinical, and biochemical responses were assessed repeatedly for 6 hours after drug intake, first with L-dopa only (control), and then after a 2 weeks on study drugs (entacapone vs. entacapone plus selegiline in one; entacapone vs. selegiline vs. entacapone plus selegiline in the other). The third study included cardiovascular reflex and spiroergometric exercise testing, first after overnight L-dopa withdrawal (control), and then after 1 week on entacapone plus selegiline as adjuncts to L-dopa. Ambulatory ECG was recorded in two of the studies. Blood pressure, heart rate, ECG, cardiovascular autonomic function, cardiorespiratory exercise responses, and the resting/exercise levels of circulating catecholamines remained unaffected by entacapone, irrespective of selegiline. Entacapone significantly enhanced both L-dopa bioavailability and its clinical response, the latter being more pronounced with the co-administration of selegiline. Dyskinesias were also increased during simultaneous use of both entacapone and selegiline as L-dopa adjuncts. Entacapone had no effect on either work capacity or work efficiency. The drug was well tolerated, both with and without selegiline. Conclusions: the use of entacapone-either alone or combined with selegiline-seems to be hemodynamically safe in L-dopa-treated PD patients, also during maximal physical effort. This is in line with the safety experience from larger phase III studies. Entacapone had no effect on cardiovascular autonomic function. Concomitant administration of entacapone and selegiline may enhance L-dopa's clinical efficacy but may also lead to increased dyskinesia.
Resumo:
Cancer is a devastating disease with poor prognosis and no curative treatment, when widely metastatic. Conventional therapies, such as chemotherapy and radiotherapy, have efficacy but are not curative and systemic toxicity can be considerable. Almost all cancers are caused due to changes in the genetic material of the transformed cells. Cancer gene therapy has emerged as a new treatment option, and past decades brought new insights in developing new therapeutic drugs for curing cancer. Oncolytic viruses constitute a novel therapeutic approach given their capacity to replicate in and kill specifically tumor cells as well as reaching tumor distant metastasis. Adenoviral gene therapy has been suggested to cause liver toxicity. This study shows that new developed adenoviruses, in particular Ad5/19p-HIT, can be redirected towards kidney while adenovirus uptake by liver is minimal. Moreover, low liver transduction resulted in a favorable tumor to liver ratio of virus load. Further, we established a new immunocompetent animal model Syrian hamsters. Wild type adenovirus 5 was found to replicate in Hap-T1 hamster tumors and normal tissues. There are no antiviral drugs available to inhibit adenovirus replication. In our study, chlorpromazine and cidofovir efficiently abrogated virus replication in vitro and showed significant reduction in vivo in tumors and liver. Once safety concerns were addressed together with the new given antiviral treatment options, we further improved oncolytic adenoviruses for better tumor penetration, local amplification and host system modulation. Further, we created Ad5/3-9HIF-Δ24-VEGFR-1-Ig, oncolytic adenovirus for improved infectivity and antiangiogenic effect for treatment of renal cancer. This virus exhibited increased anti-tumor effect and specific replication in kidney cancer cells. The key player for good efficacy of oncolytic virotherapy is the host immune response. Thus, we engineered a triple targeted adenovirus Ad5/3-hTERT-E1A-hCD40L, which would lead to tumor elimination due to tumor-specific oncolysis and apoptosis together with an anti-tumor immune response prompted by the immunomodulatory molecule. In conclusion, the results presented in this thesis constitute advances in our understanding of oncolytic virotherapy by successful tumor targeting, antiviral treatment options as a safety switch in case of replication associated side-effects, and modulation of the host immune system towards tumor elimination.
Resumo:
Aims: To gain insight on the immunological processes behind cow’s milk allergy (CMA) and the development of oral tolerance. To furthermore investigate the associations of HLA II and filaggrin genotypes with humoral responses to early oral antigens. Methods: The study population was from a cohort of 6209 healthy, full-term infants who in a double-blind randomized trial received supplementary feeding at maternity hospitals (mean duration 4 days): cow’s milk (CM) formula, extensively hydrolyzed whey formula or donor breast milk. Infants who developed CM associated symptoms that subsided during elimination diet (n=223) underwent an open oral CM challenge (at mean age 7 months). The challenge was negative in 112, and in 111 it confirmed CMA, which was IgE-mediated in 83. Patients with CMA were followed until recovery, and 94 of them participated in a follow-up study at age 8-9 years. We investigated serum samples at diagnosis (mean age 7 months, n=111), one year later (19 months, n=101) and at follow-up (8.6 years, n=85). At follow-up, also 76 children randomly selected from the original cohort and without CM associated symptoms were included. We measured CM specific IgE levels with UniCAP (Phadia, Uppsala, Sweden), and β-lactoglobulin, α-casein and ovalbumin specific IgA, IgG1, IgG4 and IgG levels with enzyme-linked immunosorbent assay in sera. We applied a microarray based immunoassay to measure the binding of IgE, IgG4 and IgA serum antibodies to sequential epitopes derived from five major CM proteins at the three time points in 11 patients with active IgE-mediated CMA at age 8-9 years and in 12 patients who had recovered from IgE-mediated CMA by age 3 years. We used bioinformatic methods to analyze the microarray data. We studied T cell expression profile in peripheral blood mononuclear cell (PBMC) samples from 57 children aged 5-12 years (median 8.3): 16 with active CMA, 20 who had recovered from CMA by age 3 years, 21 non-atopic control subjects. Following in vitro β-lactoglobulin stimulation, we measured the mRNA expression in PBMCs of 12 T-cell markers (T-bet, GATA-3, IFN-γ, CTLA4, IL-10, IL-16, TGF-β, FOXP3, Nfat-C2, TIM3, TIM4, STIM-1) with quantitative real time polymerase chain reaction, and the protein expression of CD4, CD25, CD127, FoxP3 with flow cytometry. To optimally distinguish the three study groups, we performed artificial neural networks with exhaustive search for all marker combinations. For genetic associations with specific humoral responses, we analyzed 14 HLA class II haplotypes, the PTPN22 1858 SNP (R620W allele) and 5 known filaggrin null mutations from blood samples of 87 patients with CMA and 76 control subjects (age 8.0-9.3 years). Results: High IgG and IgG4 levels to β-lactoglobulin and α-casein were associated with the HLA (DR15)-DQB1*0602 haplotype in patients with CMA, but not in control subjects. Conversely, (DR1/10)-DQB1*0501 was associated with lower IgG and IgG4 levels to these CM antigens, and to ovalbumin, most significantly among control subjects. Infants with IgE-mediated CMA had lower β -lactoglobulin and α-casein specific IgG1, IgG4 and IgG levels (p<0.05) at diagnosis than infants with non-IgE-mediated CMA or control subjects. When CMA persisted beyond age 8 years, CM specific IgE levels were higher at all three time points investigated and IgE epitope binding pattern remained stable (p<0.001) compared with recovery from CMA by age 3 years. Patients with persisting CMA at 8-9 years had lower serum IgA levels to β-lactoglobulin at diagnosis (p=0.01), and lower IgG4 levels to β-lactoglobulin (p=0.04) and α-casein (p=0.05) at follow-up compared with patients who recovered by age 3 years. In early recovery, signal of IgG4 epitope binding increased while that of IgE decreased over time, and binding patterns of IgE and IgG4 overlapped. In T cell expression profile in response to β –lactoglobulin, the combination of markers FoxP3, Nfat-C2, IL-16, GATA-3 distinguished patients with persisting CMA most accurately from patients who had become tolerant and from non-atopic subjects. FoxP3 expression at both RNA and protein level was higher in children with CMA compared with non-atopic children. Conclusions: Genetic factors (the HLA II genotype) are associated with humoral responses to early food allergens. High CM specific IgE levels predict persistence of CMA. Development of tolerance is associated with higher specific IgA and IgG4 levels and lower specific IgE levels, with decreased CM epitope binding by IgE and concurrent increase in corresponding epitope binding by IgG4. Both Th2 and Treg pathways are activated upon CM antigen stimulation in patients with CMA. In the clinical management of CMA, HLA II or filaggrin genotyping are not applicable, whereas the measurement of CM specific antibodies may assist in estimating the prognosis.
Resumo:
Dehydroamino acids are important precursors for the synthesis of a number of unnatural amino acids and are structural components in many biologically active peptide derivatives. However, efficient synthetic procedures for their production in large amounts and without side reactions are limited. We report here an improved procedure for the synthesis of dehydroalanine and dehydroamino butyric acid from the carbonate derivatives of serine and threonine using TBAF. The antiselective E-2 elimination of the carbonate derivatives of serine and threonine using TBAF is milder and more efficient than other available procedures. The elimination reaction is completed in less than 10 min with various carbonate derivatives studied and the methodology is very efficient for the synthesis of dehydroamino acids and dehydropeptides. The procedure thus provides an easy access to key synthetic precursors and can be used to introduce interesting structural elements to designed peptides. Copyright
Resumo:
A novel dodecagonal space vector structure for induction motor drive is presented in this paper. It consists of two dodecagons, with the radius of the outer one twice the inner one. Compared to existing dodecagonal space vector structures, to achieve the same PWM output voltage quality, the proposed topology lowers the switching frequency of the inverters and reduces the device ratings to half. At the same time, other benefits obtained from existing dodecagonal space vector structure are retained here. This includes the extension of the linear modulation range and elimination of all 6+/-1 harmonics (n=odd) from the phase voltage. The proposed structure is realized by feeding an open-end winding induction motor with two conventional three level inverters. A detailed calculation of the PWM timings for switching the space vector points is also presented. Simulation and experimental results indicate the possible application of the proposed idea for high power drives.
Resumo:
Peptide disulfides are unstable under alkaline conditions, resulting in the formation of products containing lanthionine and polysulfied linkages. Electrospray ionization mass spectrometry has been used to characterize major species obtained when cyclic and acyclic peptide disulfides are exposed to alkaline media. Studies on a model cyclic peptide disulfide (Boc - Cys - Pro - Leu - Cys - NHMe) and an acyclic peptide, oxidized glutathione, bis ((gamma)Glu Cys - Gly - COOH), are described. Disulfide cleavage reactions are initiated by the abstraction of (CH)-H-alpha or (CH)-H-beta protons of Cys residues, with Subsequent elimination of H2S or H2S2. The buildup of reactive thiol species which act on intermediates containing dehydroalanine residues, rationalizes the formation of lanthionine and polysulfide products. In the case of the cyclic peptide disulfide, the formation of cyclic products is facilitated by the intramolecular nature of the Michael addition reaction of thiols to the dehydroalanine residue. Mass spectral evidence for the intermediate species is presented by using alkylation of thiol groups as a trapping method. Mass spectral fragmentation in the negative ion mode of the peptides derived from trisulfides and tetrasulfides results in elimination of S-2. (J Am Soc Mass Spectrom 2009, 20, 783-791) (C) 2009 American Society for Mass Spectrometry.
Resumo:
Peptide disulfides are unstable under alkaline conditions, resulting in the formation of products containing lanthionine and polysulfied linkages. Electrospray ionization mass spectrometry has been used to characterize major species obtained when cyclic and acyclic peptide disulfides are exposed to alkaline media. Studies on a model cyclic peptide disulfide (Boc - Cys - Pro - Leu - Cys - NHMe) and an acyclic peptide, oxidized glutathione, bis ((gamma)Glu Cys - Gly - COOH), are described. Disulfide cleavage reactions are initiated by the abstraction of (CH)-H-alpha or (CH)-H-beta protons of Cys residues, with Subsequent elimination of H2S or H2S2. The buildup of reactive thiol species which act on intermediates containing dehydroalanine residues, rationalizes the formation of lanthionine and polysulfide products. In the case of the cyclic peptide disulfide, the formation of cyclic products is facilitated by the intramolecular nature of the Michael addition reaction of thiols to the dehydroalanine residue. Mass spectral evidence for the intermediate species is presented by using alkylation of thiol groups as a trapping method. Mass spectral fragmentation in the negative ion mode of the peptides derived from trisulfides and tetrasulfides results in elimination of S-2. (J Am Soc Mass Spectrom 2009, 20, 783-791) (C) 2009 American Society for Mass Spectrometry.
Resumo:
Hydrothermal treatment of a slurry of badly crystalline (beta(bc)) nickel hydroxide at different temperatures (65-170 degrees C) results in the progressive ordering of the structure by the step-wise elimination of disorders. Interstratification is eliminated at 140 degrees C, while cation vacancies are eliminated at 170 degrees C. A small percentage of stacking faults continue to persist even in `crystalline' samples. Electrochemical investigations show that the crystalline nickel hydroxide has a very low (0.4 e/Ni) reversible charge storage capacity. An incidence of at least 15% stacking faults combined with cation vacancies is essential for nickel hydroxide to perform close to its theoretical (1 e/ Ni) discharge capacity. (c) 2005 The Electrochemical Society.
Resumo:
Sulfotransferases (SULTs) and UDP-glucuronosyltransferases (UGTs) are important detoxification enzymes and they contribute to bioavailability and elimination of many drugs. SULT1A3 is an extrahepatic enzyme responsible for the sulfonation of dopamine, which is often used as its probe substrate. A new method for analyzing dopamine-3-O-sulfate and dopamine-4-O-sulfate by high-performance liquid chromatography was developed and the enzyme kinetic parameters for their formation were determined using purified recombinant human SULT1A3. The results show that SULT1A3 strongly favors the 3-hydroxy group of dopamine, which indicates that it may be the major enzyme responsible for the difference between the circulating levels of dopamine sulfates in human blood. All 19 known human UGTs were expressed as recombinant enzymes in baculovirus infected insect cells and their activities toward dopamine and estradiol were studied. UGT1A10 was identified as the only UGT capable of dopamine glucuronidation at a substantial level. The results were supported by studies with human intestinal and liver microsomes. The affinity was low indicating that UGT1A10 is not an important enzyme in dopamine metabolism in vivo. Despite the low affinity, dopamine is a potential new probe substrate for UGT1A10 due to its selectivity. Dopamine was used to study the importance of phenylalanines 90 and 93 in UGT1A10. The results revealed distinct effects that are dependent on differences in the size of the side chain and on the differences in their position within the protein. Examination of twelve mutants revealed lower activity in all of them. However, the enzyme kinetic studies of four mutants showed that their affinities were similar to that of UGT1A10 suggesting that F90 and F93 are not directly involved in dopamine binding in the active site. The glucuronidation of β-estradiol and epiestradiol (α-estradiol) was studied to elucidate how the orientation of the 17-OH group affects conjugation at the 3-OH or the 17-OH of either diastereomer. The results show that there are clear differences in the regio- and stereoselectivities of UGTs. The most active isoforms were UGT1A10 and UGT2B7 demonstrating opposite regioselectivity. The stereoselectivities of UGT2Bs were more complex than those of UGT1As. The amino acid sequences of the human UGTs 1A9 and 1A10 are 93% identical, yet there are large differences in their activity and substrate selectivity. Several mutants were constructed to identify the residues responsible for the activity differences. The results revealed that the residues between Leu86 and Tyr176 of UGT1A9 determine the differences between UGT1A9 and UGT1A10. Phe117 of UGT1A9 participated in 1-naphthol binding and the residues at positions 152 and 169 contributed to the higher glucuronidation rates of UGT1A10. In summary, the results emphasize that the substrate selectivities, including regio- and stereoselectivities, of UGTs are complex and they are controlled by many amino acids rather than one critical residue.