984 resultados para Pacifastin light chain domain (PLD)
Resumo:
We propose a method to acquire 3D light fields using a hand-held camera, and describe several computational photography applications facilitated by our approach. As our input we take an image sequence from a camera translating along an approximately linear path with limited camera rotations. Users can acquire such data easily in a few seconds by moving a hand-held camera. We include a novel approach to resample the input into regularly sampled 3D light fields by aligning them in the spatio-temporal domain, and a technique for high-quality disparity estimation from light fields. We show applications including digital refocusing and synthetic aperture blur, foreground removal, selective colorization, and others.
Resumo:
This thesis covers a broad part of the field of computational photography, including video stabilization and image warping techniques, introductions to light field photography and the conversion of monocular images and videos into stereoscopic 3D content. We present a user assisted technique for stereoscopic 3D conversion from 2D images. Our approach exploits the geometric structure of perspective images including vanishing points. We allow a user to indicate lines, planes, and vanishing points in the input image, and directly employ these as guides of an image warp that produces a stereo image pair. Our method is most suitable for scenes with large scale structures such as buildings and is able to skip the step of constructing a depth map. Further, we propose a method to acquire 3D light fields using a hand-held camera, and describe several computational photography applications facilitated by our approach. As the input we take an image sequence from a camera translating along an approximately linear path with limited camera rotations. Users can acquire such data easily in a few seconds by moving a hand-held camera. We convert the input into a regularly sampled 3D light field by resampling and aligning them in the spatio-temporal domain. We also present a novel technique for high-quality disparity estimation from light fields. Finally, we show applications including digital refocusing and synthetic aperture blur, foreground removal, selective colorization, and others.
Resumo:
INTRODUCTION Fibrinogen storage disease (FSD) is characterized by hypofibrinogenemia and hepatic inclusions due to impaired release of mutant fibrinogen which accumulates and aggregates in the hepatocellular endoplasmic reticulum. Liver disease is variable. AIM We studied a new Swiss family with fibrinogen Aguadilla. In order to understand the molecular peculiarity of FSD mutations, fibrinogen Aguadilla and the three other causative mutations, all located in the γD domain, were modelled. METHOD The proband is a Swiss girl aged 4 investigated because of fatigue and elevated liver enzymes. Protein structure models were prepared using the Swiss-PdbViewer and POV-Ray software. RESULTS The proband was found to be heterozygous for fibrinogen Aguadilla: FGG Arg375Trp. Familial screening revealed that her mother and maternal grandmother were also affected and, in addition, respectively heterozygous and homozygous for the hereditary haemochromatosis mutation HFE C282Y. Models of backbone and side-chain interactions for fibrinogen Aguadilla in a 10-angstrom region revealed the loss of five H-bonds and the gain of one H-bond between structurally important amino acids. The structure predicted for fibrinogen Angers showed a novel helical structure in place of hole 'a' on the outer edge of γD likely to have a negative impact on fibrinogen assembly and secretion. CONCLUSION The mechanism by which FSD mutations generate hepatic intracellular inclusions is still not clearly established although the promotion of aberrant intermolecular strand insertions is emerging as a likely cause. Reporting new cases is essential in the light of novel opportunities of treatment offered by increasing knowledge of the degradation pathway and autophagy.
Resumo:
We introduce gradient-domain rendering for Monte Carlo image synthesis.While previous gradient-domain Metropolis Light Transport sought to distribute more samples in areas of high gradients, we show, in contrast, that estimating image gradients is also possible using standard (non-Metropolis) Monte Carlo algorithms, and furthermore, that even without changing the sample distribution, this often leads to significant error reduction. This broadens the applicability of gradient rendering considerably. To gain insight into the conditions under which gradient-domain sampling is beneficial, we present a frequency analysis that compares Monte Carlo sampling of gradients followed by Poisson reconstruction to traditional Monte Carlo sampling. Finally, we describe Gradient-Domain Path Tracing (G-PT), a relatively simple modification of the standard path tracing algorithm that can yield far superior results.
Resumo:
One of the most critical aspects of G Protein Coupled Receptors (GPCRs) regulation is their rapid and acute desensitization following agonist stimulation. Phosphorylation of these receptors by GPCR kinases (GRK) is a major mechanism of desensitization. Considerable evidence from studies of rhodopsin kinase and GRK2 suggests there is an allosteric docking site for the receptor distinct from the GRK catalytic site. While the agonist-activated GPCR appears crucial for GRK activation, the molecular details of this interaction remain unclear. Recent studies suggested an important role for the N- and C-termini and domains in the small lobe of the kinase domain in allosteric activation; however, neither the mechanism of action of that site nor the RH domain contributions have been elucidated. To search for the allosteric site, we first indentified evolutionarily conserved sites within the RH and kinase domains presumably deterministic of protein function employing evolutionary trace (ET) methodology and crystal structures of GRK6. Focusing on a conserved cluster centered on helices 3, 9, and 10 in the RH domain, key residues of GRK5 and 6 were targeted for mutagenesis and functional assays. We found that a number of double mutations within helices 3, 9, and 10 and the N-terminus markedly reduced (50–90%) the constitutive phosphorylation of the β-2 Adrenergic Receptor (β2AR) in intact cells and phosphorylation of light-activated rhodopsin (Rho*) in vitro as compared to wild type (WT) GRK5 or 6. Based on these results, we designed peptide mimetics of GRK5 helix 9 both computationally and through chemical modifications with the goal of both confirming the importance of helix 9 and developing a useful inhibitor to disrupt the GPCR-GRK interaction. Several peptides were found to block Rho* phosphorylation by GRK5 including the native helix 9 sequence, Peptide Builder designed-peptide preserving only the key ET residues, and chemically locked helices. Most peptidomimetics showed inhibition of GRK5 activity greater than 80 % with an IC50 of ∼ 30 µM. Alanine scanning of helix 9 has further revealed both essential and non-essential residues for inhibition. Importantly, substitution of Arg 169 by an alanine in the native helix 9-based peptide gave an almost complete inhibition at 30 µM with an IC50 of ∼ 10 µM. In summary we report a previously unrecognized crucial role for the RH domain of GRK5 and 6, and the subsequent identification of a lead peptide inhibitor of protein-protein interaction with potential for specific blockade of GPCR desensitization. ^
Resumo:
We investigated the induction and physiological role of Thr18 and Ser20 phosphorylation of p53 in response to DNA damage caused by treatment with ionizing (IR) or ultraviolet (UV) radiation. Polyclonal antibodies specifically recognizing phospho-Thr18 and phospho-Ser20 were used to detect p53 phosphorylation in vivo. Analyses of five wild-type (wt) p53 containing cell lines revealed lineage specific differences in phosphorylation of Thr18 and Ser20 after treatment with IR or UV. Importantly, the phosphorylation of p53 at Thr18 and Ser20 correlated with induction of the p53 downstream targets p21Waf1/Cip1 (p21) and Mdm-2, suggesting a transactivation enhancing role for Thr18 and Ser20 phosphorylation. Whereas Thr18 phosphorylation appears to abolish side-chain hydrogen bonding between Thr18 and Asp21, Ser20 phosphorylation may introduce charge attraction between Ser20 and Lys24. Both of these interactions could contribute to stabilizing α-helical conformation within the p53 transactivation domain. Mutagenesis-derived phosphorylation mimicry of p53 at Thr18 and Ser20 by Asp substitution (p53T18D/S20D) altered transactivation domain conformation and significantly reduced the interaction of p53 with the transactivation repressor Mdm-2. Mdm-2 interaction was also reduced with p53 containing a single site Asp substitution at Ser20 (p53S20D) and with the Thr18/Asp21 hydrogen bond disrupting p53 mutants p53T18A, p53T18D and p53D21A. In contrast, no direct effect was observed on the interaction of p53T18A, p53T18D and p53D21A with the basal transcription factor TAF II31. However, prior incubation of p53T18A, p53T18D and p53D21A with Mdm-2 modulated TAFII31 interaction, suggesting Mdm-2 blocks the accessibility of p53 to TAFII31. Consistently, p53-null cells transfected with p53S20D and p53T18A, p53T18D and p53D21A demonstrated enhanced endogenous p21 expression; transfection with p53T18D/S20D most significantly enhanced p21 and fas/APO-1 (fas ) expression. Expression of p53T18A, p53T18D and p53D21A in p53/Mdm-2-double null cells exhibited no discernible differences in p21 expression. Cell proliferation was also significantly curtailed in p53-null cells transfected with p53T18D/S20D relative to cells transfected with wt p53. We conclude the irradiation-induced phosphorylation of p53 at Thr18 and Ser20 alters the α-helical conformation of its transactivation domain. Altered conformation reduces direct interaction with the transrepressor Mdm-2, enhancing indirect recruitment of the basal transcription factor TAFII31, facilitating sequence-specific transactivation function resulting in proliferative arrest. ^
Resumo:
Diatoms can occur as single cells or as chain-forming aggregates. These two strategies affect buoyancy, predator evasion, light absorption and nutrient uptake. Adjacent cells in chains establish connections through various processes that determine strength and flexibility of the bonds, and at distinct cellular locations defining colony structure. Chain length has been found to vary with temperature and nutrient availability as well as being positively correlated with growth rate. However, the potential effect of enhanced carbon dioxide (CO2) concentrations and consequent changes in seawater carbonate chemistry on chain formation is virtually unknown. Here we report on experiments with semi-continuous cultures of the freshly isolated diatom Asterionellopsis glacialis grown under increasing CO2 levels ranging from 320 to 3400 µatm. We show that the number of cells comprising a chain, and therefore chain length, increases with rising CO2 concentrations. We also demonstrate that while cell division rate changes with CO2 concentrations, carbon, nitrogen and phosphorus cellular quotas vary proportionally, evident by unchanged organic matter ratios. Finally, beyond the optimum CO2 concentration for growth, carbon allocation changes from cellular storage to increased exudation of dissolved organic carbon. The observed structural adjustment in colony size could enable growth at high CO2 levels, since longer, spiral-shaped chains are likely to create microclimates with higher pH during the light period. Moreover increased chain length of Asterionellopsis glacialis may influence buoyancy and, consequently, affect competitive fitness as well as sinking rates. This would potentially impact the delicate balance between the microbial loop and export of organic matter, with consequences for atmospheric carbon dioxide.
Resumo:
Current nanometer technologies suffer within-die parameter uncertainties, varying workload conditions, aging, and temperature effects that cause a serious reduction on yield and performance. In this scenario, monitoring, calibration, and dynamic adaptation become essential, demanding systems with a collection of multi purpose monitors and exposing the need for light-weight monitoring networks. This paper presents a new monitoring network paradigm able to perform an early prioritization of the information. This is achieved by the introduction of a new hierarchy level, the threshing level. Targeting it, we propose a time-domain signaling scheme over a single-wire that minimizes the network switching activity as well as the routing requirements. To validate our approach, we make a thorough analysis of the architectural trade-offs and expose two complete monitoring systems that suppose an area improvement of 40% and a power reduction of three orders of magnitude compared to previous works.
Resumo:
Current nanometer technologies are subjected to several adverse effects that seriously impact the yield and performance of integrated circuits. Such is the case of within-die parameters uncertainties, varying workload conditions, aging, temperature, etc. Monitoring, calibration and dynamic adaptation have appeared as promising solutions to these issues and many kinds of monitors have been presented recently. In this scenario, where systems with hundreds of monitors of different types have been proposed, the need for light-weight monitoring networks has become essential. In this work we present a light-weight network architecture based on digitization resource sharing of nodes that require a time-to-digital conversion. Our proposal employs a single wire interface, shared among all the nodes in the network, and quantizes the time domain to perform the access multiplexing and transmit the information. It supposes a 16% improvement in area and power consumption compared to traditional approaches.
Resumo:
Time domain laser reflectance spectroscopy (TDRS) was applied for the first time to evaluate internal fruit quality. This technique, known in medicine-related knowledge areas, has not been used before in agricultural or food research. It allows the simultaneous non-destructive measuring of two optical characteristics of the tissues: light scattering and absorption. Models to measure firmness, sugar & acid contents in kiwifruit, tomato, apple, peach, nectarine and other fruits were built using sequential statistical techniques: principal component analysis, multiple stepwise linear regression, clustering and discriminant analysis. Consistent correlations were established between the two parameters measured with TDRS, i.e. absorption & transport scattering coefficients, with chemical constituents (sugars and acids) and firmness, respectively. Classification models were built to sort fruits into three quality grades, according to their firmness, soluble solids and acidity.
Resumo:
Non-destructive measurement of fruit quality has been an important objective through recent years (Abbott, 1999). Near infrared spectroscopy (NIR) is applicable to the cuantification of chemicals in foods and NIK "laser spectroscopy" can be used to estimate the firmness of fruits. However, die main limitation of current optical techniques that measure light transmission is that they do not account for the coupling between absorption and scattering inside the tissue, when quantifying the intensity o f reemitted light. The solution o f this l i m i t a t i o n was the goal o f the present work.
Resumo:
In this study, a method for vehicle tracking through video analysis based on Markov chain Monte Carlo (MCMC) particle filtering with metropolis sampling is proposed. The method handles multiple targets with low computational requirements and is, therefore, ideally suited for advanced-driver assistance systems that involve real-time operation. The method exploits the removed perspective domain given by inverse perspective mapping (IPM) to define a fast and efficient likelihood model. Additionally, the method encompasses an interaction model using Markov Random Fields (MRF) that allows treatment of dependencies between the motions of targets. The proposed method is tested in highway sequences and compared to state-of-the-art methods for vehicle tracking, i.e., independent target tracking with Kalman filtering (KF) and joint tracking with particle filtering. The results showed fewer tracking failures using the proposed method.
Resumo:
MLN64 is a protein that is highly expressed in certain breast carcinomas. The C terminus of MLN64 shares significant homology with the steroidogenic acute regulatory protein (StAR), which plays a key role in steroid hormone biosynthesis by enhancing the intramitochondrial translocation of cholesterol to the cholesterol side-chain cleavage enzyme. We tested the ability of MLN64 to stimulate steroidogenesis by using COS-1 cells cotransfected with plasmids expressing the human cholesterol side-chain cleavage enzyme system and wild-type and mutant MLN64 proteins. Wild-type MLN64 increased pregnenolone secretion in this system 2-fold. The steroidogenic activity of MLN64 was found to reside in the C terminus of the protein, because constructs from which the C-terminal StAR homology domain was deleted had no steroidogenic activity. In contrast, removal of N-terminal sequences increased MLN64’s steroidogenesis-enhancing activity. MLN64 mRNA was found in many human tissues, including the placenta and brain, which synthesize steroid hormones but do not express StAR. Western blot analysis revealed the presence of lower molecular weight immunoreactive MLN64 species that contain the C-terminal sequences in human tissues. Homologs of both MLN64 and StAR were identified in Caenorhabditis elegans, indicating that the two proteins are ancient. Mutations that inactivate StAR were correlated with amino acid residues that are identical or similar among StAR and MLN64, indicating that conserved motifs are important for steroidogenic activity. We conclude that MLN64 stimulates steroidogenesis by virtue of its homology to StAR.
Resumo:
We report a unique case of a gene containing three homologous and contiguous repeat sequences, each of which, after excision, cloning, and expression in Escherichia coli, is shown to code for a peptide catalyzing the same reaction as the native protein, Gonyaulax polyedra luciferase (Mr = 137). This enzyme, which catalyzes the light-emitting oxidation of a linear tetrapyrrole (dinoflagellate luciferin), exhibits no sequence similarities to other luciferases in databases. Sequence analysis also reveals an unusual evolutionary feature of this gene: synonymous substitutions are strongly constrained in the central regions of each of the repeated coding sequences.