955 resultados para Ophidic accidents
Resumo:
Estimated 640,700 persons suffered a work-related injury or illness in 2009-2010 and 444 lost their lives as a result in 2008-2009, in Australia Very little is known about what proportion of accidents are directly attributable to the effects of AOD Anecdotal evidence highlights issues of AOD and its association with safety risk on construction sites
Resumo:
Safety-compromising accidents occur regularly in the led outdoor activity domain. Formal accident analysis is an accepted means of understanding such events and improving safety. Despite this, there remains no universally accepted framework for collecting and analysing accident data in the led outdoor activity domain. This article presents an application of Rasmussen's risk management framework to the analysis of the Lyme Bay sea canoeing incident. This involved the development of an Accimap, the outputs of which were used to evaluate seven predictions made by the framework. The Accimap output was also compared to an analysis using an existing model from the led outdoor activity domain. In conclusion, the Accimap output was found to be more comprehensive and supported all seven of the risk management framework's predictions, suggesting that it shows promise as a theoretically underpinned approach for analysing, and learning from, accidents in the led outdoor activity domain.
Resumo:
One major gap in transportation system safety management is the ability to assess the safety ramifications of design changes for both new road projects and modifications to existing roads. To fulfill this need, FHWA and its many partners are developing a safety forecasting tool, the Interactive Highway Safety Design Model (IHSDM). The tool will be used by roadway design engineers, safety analysts, and planners throughout the United States. As such, the statistical models embedded in IHSDM will need to be able to forecast safety impacts under a wide range of roadway configurations and environmental conditions for a wide range of driver populations and will need to be able to capture elements of driving risk across states. One of the IHSDM algorithms developed by FHWA and its contractors is for forecasting accidents on rural road segments and rural intersections. The methodological approach is to use predictive models for specific base conditions, with traffic volume information as the sole explanatory variable for crashes, and then to apply regional or state calibration factors and accident modification factors (AMFs) to estimate the impact on accidents of geometric characteristics that differ from the base model conditions. In the majority of past approaches, AMFs are derived from parameter estimates associated with the explanatory variables. A recent study for FHWA used a multistate database to examine in detail the use of the algorithm with the base model-AMF approach and explored alternative base model forms as well as the use of full models that included nontraffic-related variables and other approaches to estimate AMFs. That research effort is reported. The results support the IHSDM methodology.
Resumo:
Statistical modeling of traffic crashes has been of interest to researchers for decades. Over the most recent decade many crash models have accounted for extra-variation in crash counts—variation over and above that accounted for by the Poisson density. The extra-variation – or dispersion – is theorized to capture unaccounted for variation in crashes across sites. The majority of studies have assumed fixed dispersion parameters in over-dispersed crash models—tantamount to assuming that unaccounted for variation is proportional to the expected crash count. Miaou and Lord [Miaou, S.P., Lord, D., 2003. Modeling traffic crash-flow relationships for intersections: dispersion parameter, functional form, and Bayes versus empirical Bayes methods. Transport. Res. Rec. 1840, 31–40] challenged the fixed dispersion parameter assumption, and examined various dispersion parameter relationships when modeling urban signalized intersection accidents in Toronto. They suggested that further work is needed to determine the appropriateness of the findings for rural as well as other intersection types, to corroborate their findings, and to explore alternative dispersion functions. This study builds upon the work of Miaou and Lord, with exploration of additional dispersion functions, the use of an independent data set, and presents an opportunity to corroborate their findings. Data from Georgia are used in this study. A Bayesian modeling approach with non-informative priors is adopted, using sampling-based estimation via Markov Chain Monte Carlo (MCMC) and the Gibbs sampler. A total of eight model specifications were developed; four of them employed traffic flows as explanatory factors in mean structure while the remainder of them included geometric factors in addition to major and minor road traffic flows. The models were compared and contrasted using the significance of coefficients, standard deviance, chi-square goodness-of-fit, and deviance information criteria (DIC) statistics. The findings indicate that the modeling of the dispersion parameter, which essentially explains the extra-variance structure, depends greatly on how the mean structure is modeled. In the presence of a well-defined mean function, the extra-variance structure generally becomes insignificant, i.e. the variance structure is a simple function of the mean. It appears that extra-variation is a function of covariates when the mean structure (expected crash count) is poorly specified and suffers from omitted variables. In contrast, when sufficient explanatory variables are used to model the mean (expected crash count), extra-Poisson variation is not significantly related to these variables. If these results are generalizable, they suggest that model specification may be improved by testing extra-variation functions for significance. They also suggest that known influences of expected crash counts are likely to be different than factors that might help to explain unaccounted for variation in crashes across sites
Resumo:
Predicting safety on roadways is standard practice for road safety professionals and has a corresponding extensive literature. The majority of safety prediction models are estimated using roadway segment and intersection (microscale) data, while more recently efforts have been undertaken to predict safety at the planning level (macroscale). Safety prediction models typically include roadway, operations, and exposure variables—factors known to affect safety in fundamental ways. Environmental variables, in particular variables attempting to capture the effect of rain on road safety, are difficult to obtain and have rarely been considered. In the few cases weather variables have been included, historical averages rather than actual weather conditions during which crashes are observed have been used. Without the inclusion of weather related variables researchers have had difficulty explaining regional differences in the safety performance of various entities (e.g. intersections, road segments, highways, etc.) As part of the NCHRP 8-44 research effort, researchers developed PLANSAFE, or planning level safety prediction models. These models make use of socio-economic, demographic, and roadway variables for predicting planning level safety. Accounting for regional differences - similar to the experience for microscale safety models - has been problematic during the development of planning level safety prediction models. More specifically, without weather related variables there is an insufficient set of variables for explaining safety differences across regions and states. Furthermore, omitted variable bias resulting from excluding these important variables may adversely impact the coefficients of included variables, thus contributing to difficulty in model interpretation and accuracy. This paper summarizes the results of an effort to include weather related variables, particularly various measures of rainfall, into accident frequency prediction and the prediction of the frequency of fatal and/or injury degree of severity crash models. The purpose of the study was to determine whether these variables do in fact improve overall goodness of fit of the models, whether these variables may explain some or all of observed regional differences, and identifying the estimated effects of rainfall on safety. The models are based on Traffic Analysis Zone level datasets from Michigan, and Pima and Maricopa Counties in Arizona. Numerous rain-related variables were found to be statistically significant, selected rain related variables improved the overall goodness of fit, and inclusion of these variables reduced the portion of the model explained by the constant in the base models without weather variables. Rain tends to diminish safety, as expected, in fairly complex ways, depending on rain frequency and intensity.
Resumo:
Considerable past research has explored relationships between vehicle accidents and geometric design and operation of road sections, but relatively little research has examined factors that contribute to accidents at railway-highway crossings. Between 1998 and 2002 in Korea, about 95% of railway accidents occurred at highway-rail grade crossings, resulting in 402 accidents, of which about 20% resulted in fatalities. These statistics suggest that efforts to reduce crashes at these locations may significantly reduce crash costs. The objective of this paper is to examine factors associated with railroad crossing crashes. Various statistical models are used to examine the relationships between crossing accidents and features of crossings. The paper also compares accident models developed in the United States and the safety effects of crossing elements obtained using Korea data. Crashes were observed to increase with total traffic volume and average daily train volumes. The proximity of crossings to commercial areas and the distance of the train detector from crossings are associated with larger numbers of accidents, as is the time duration between the activation of warning signals and gates. The unique contributions of the paper are the application of the gamma probability model to deal with underdispersion and the insights obtained regarding railroad crossing related vehicle crashes. Considerable past research has explored relationships between vehicle accidents and geometric design and operation of road sections, but relatively little research has examined factors that contribute to accidents at railway-highway crossings. Between 1998 and 2002 in Korea, about 95% of railway accidents occurred at highway-rail grade crossings, resulting in 402 accidents, of which about 20% resulted in fatalities. These statistics suggest that efforts to reduce crashes at these locations may significantly reduce crash costs. The objective of this paper is to examine factors associated with railroad crossing crashes. Various statistical models are used to examine the relationships between crossing accidents and features of crossings. The paper also compares accident models developed in the United States and the safety effects of crossing elements obtained using Korea data. Crashes were observed to increase with total traffic volume and average daily train volumes. The proximity of crossings to commercial areas and the distance of the train detector from crossings are associated with larger numbers of accidents, as is the time duration between the activation of warning signals and gates. The unique contributions of the paper are the application of the gamma probability model to deal with underdispersion and the insights obtained regarding railroad crossing related vehicle crashes.
Resumo:
Many studies focused on the development of crash prediction models have resulted in aggregate crash prediction models to quantify the safety effects of geometric, traffic, and environmental factors on the expected number of total, fatal, injury, and/or property damage crashes at specific locations. Crash prediction models focused on predicting different crash types, however, have rarely been developed. Crash type models are useful for at least three reasons. The first is motivated by the need to identify sites that are high risk with respect to specific crash types but that may not be revealed through crash totals. Second, countermeasures are likely to affect only a subset of all crashes—usually called target crashes—and so examination of crash types will lead to improved ability to identify effective countermeasures. Finally, there is a priori reason to believe that different crash types (e.g., rear-end, angle, etc.) are associated with road geometry, the environment, and traffic variables in different ways and as a result justify the estimation of individual predictive models. The objectives of this paper are to (1) demonstrate that different crash types are associated to predictor variables in different ways (as theorized) and (2) show that estimation of crash type models may lead to greater insights regarding crash occurrence and countermeasure effectiveness. This paper first describes the estimation results of crash prediction models for angle, head-on, rear-end, sideswipe (same direction and opposite direction), and pedestrian-involved crash types. Serving as a basis for comparison, a crash prediction model is estimated for total crashes. Based on 837 motor vehicle crashes collected on two-lane rural intersections in the state of Georgia, six prediction models are estimated resulting in two Poisson (P) models and four NB (NB) models. The analysis reveals that factors such as the annual average daily traffic, the presence of turning lanes, and the number of driveways have a positive association with each type of crash, whereas median widths and the presence of lighting are negatively associated. For the best fitting models covariates are related to crash types in different ways, suggesting that crash types are associated with different precrash conditions and that modeling total crash frequency may not be helpful for identifying specific countermeasures.
Resumo:
Australia, road crash trauma costs the nation A$15 billion annually whilst the US estimates an economic impact of around US$ 230 billion on its network. Worldwide economic cost of road crashes is estimated to be around US$ 518 billion each year. Road accidents occur due to a number of factors including driver behaviour, geometric alignment, vehicle characteristics, environmental impacts, and the type and condition of the road surfacing. Skid resistance is considered one of the most important road surface characteristics because it has a direct effect on traffic safety. In 2005, Austroads (the Association of Australian and New Zealand Road Transport and Traffic Authorities) published a guideline for the management of skid resistance and Queensland Department of Main Roads (QDMR) developed a skid resistance management plan (SRMP). The current QDMR strategy is based on rationale analytical methodology supported by field inspection with related asset management decision tools. The Austroads’s guideline and QDMR's skid resistance management plan have prompted QDMR to review its skid resistance management practice. As a result, a joint research project involving QDMR, Queensland University of Technology (QUT) and the Corporative Research Centre for Integrated Engineering Asset Management (CRC CIEAM) was formed. The research project aims at investigating whether there is significant relationship between road crashes and skid resistance on Queensland’s road networks. If there is, the current skid resistance management practice of QDMR will be reviewed and appropriate skid resistance investigatory levels will be recommended. This paper presents analysis results in assessing the relationship between wet crashes and skid resistance on Queensland roads. Attributes considered in the analysis include surface types, annual average daily traffic (AADT), speed and seal age.
Resumo:
The efficacy of road safety countermeasures to deter motorists from engaging in illegal behaviours is extremely important when considering the personal and economic impact of road accidents on the community. Within many countries, deterrence theory has remained a cornerstone to criminology and criminal justice policy, particularly within the field of road safety, as policy makers and enforcement agencies attempt to increase perceptions regarding the certainty, severity and swiftness of sanctions for those who engage in illegal motoring behaviours. Using the Australian experience (particularly the tremendous amount of research into drink driving), the current paper reviews the principles underpinning deterrence theory, the utilisation of the approach within some contemporary road safety initiatives (e.g., Random Breath Testing) as well as highlights some methods to enhance a deterrent effect. The paper also provides direction for future deterrence-based research, in particular, considering the powerful impact of non-legal sanctions, punishment avoidance as well as creating culturally embedded behavioural change.
Resumo:
Hazard perception in driving is the one of the few driving-specific skills associated with crash involvement. However, this relationship has only been examined in studies where the majority of individuals were younger than 65. We present the first data revealing an association between hazard perception and self-reported crash involvement in drivers aged 65 and over. In a sample of 271 drivers, we found that individuals whose mean response time to traffic hazards was slower than 6.68 seconds (the ROC-curve derived pass mark for the test) were 2.32 times (95% CI 1.46, 3.22) more likely to have been involved in a self-reported crash within the previous five years than those with faster response times. This likelihood ratio became 2.37 (95% CI 1.49, 3.28) when driving exposure was controlled for. As a comparison, individuals who failed a test of useful field of view were 2.70 (95% CI 1.44, 4.44) times more likely to crash than those who passed. The hazard perception test and the useful field of view measure accounted for separate variance in crash involvement. These findings indicate that hazard perception testing and training could be potentially useful for road safety interventions for this age group.
Resumo:
The Australian report for the Global Media Monitoring Project 2010 (GMMP 2010) involved a study of 374 stories that were sampled from 26 Australian newspapers, radio and television stations, and internet news services on 10 November 2009. This snapshot of reporting on that day suggests that women are under-represented in the Australian news media as both the sources and creators of news. Females made up only 24% of the 1012 news sources who were heard, read about or seen in the stories that were studied. Neglect of female sources was particularly noticeable in sports news. Women made up only 1% of the 142 sources who were talked about or quoted in sports stories. Female sources of news were disproportionately portrayed as celebrities and victims. Although women made up only 24% of sources overall, they comprised 44% of victims of crimes, accidents, war, health problems, or discrimination. Unsurprisingly, women made up 32% of sources in stories about violent crimes and 29% in stories about disasters, accidents or emergencies – usually in the role of victim. Females were commonly defined in terms of their status as a mother, daughter, wife, sister or other family relationship. Family status was mentioned for 33% of women quoted or discussed in the news stories compared to only 13% of male sources. Women also made up 75% of sources described as homemakers or parents. The Australian GMMP 2010 study also indicates a gender division among the journalists who wrote or presented the news. Only 32% of the stories were written or presented by female reporters and newsreaders. The gender inequality was again most evident in sports journalism. Findings from the Australian report also contributed to the GMMP 2010 Global Report and the Pacific GMMP 2010 Regional Report, which are available at http://whomakesthenews.org/gmmp/gmmp-reports/gmmp-2010-reports
Resumo:
This study aimed to determine whether two brief, low cost interventions would reduce young drivers’ optimism bias for their driving skills and accident risk perceptions. This tendency for such drivers to perceive themselves as more skilful and less prone to driving accidents than their peers may lead to less engagement in precautionary driving behaviours and a greater engagement in more dangerous driving behaviour. 243 young drivers (aged 17 - 25 years) were randomly allocated to one of three groups: accountability, insight or control. All participants provided both overall and specific situation ratings of their driving skills and accident risk relative to a typical young driver. Prior to completing the questionnaire, those in the accountability condition were first advised that their driving skills and accident risk would be later assessed via a driving simulator. Those in the insight condition first underwent a difficult computer-based hazard perception task designed to provide participants with insight into their potential limitations when responding to hazards in difficult and unpredictable driving situations. Participants in the control condition completed only the questionnaire. Results showed that the accountability manipulation was effective in reducing optimism bias in terms of participants’ comparative ratings of their accident risk in specific situations, though only for less experienced drivers. In contrast, among more experienced males, participants in the insight condition showed greater optimism bias for overall accident risk than their counterparts in the accountability or control groups. There were no effects of the manipulations on drivers’ skills ratings. The differential effects of the two types of manipulations on optimism bias relating to one’s accident risk in different subgroups of the young driver sample highlight the importance of targeting interventions for different levels of experience. Accountability interventions may be beneficial for less experienced young drivers but the results suggest exercising caution with the use of insight type interventions, particularly hazard perception style tasks, for more experienced young drivers typically still in the provisional stage of graduated licensing systems.
Resumo:
Statistics indicate that the percentage of fatal industrial accidents arising from repair, maintenance, minor alteration and addition (RMAA) works in Hong Kong was disturbingly high and was over 56% in 2006. This paper provides an initial report of a research project funded by the Research Grants Council (RGC) of the HKSAR to address this safety issue. The aim of this study is to scrutinize the causal relationship between safety climate and safety performance in the RMAA sector. It aims to evaluate the safety climate in the RMAA sector; examine its impacts on safety performance, and recommend measures to improve safety performance in the RMAA sector. This paper firstly reports on the statistics of construction accidents arising from RMAA works. Qualitative and quantitative research methods applied in conducting the research are dis-cussed. The study will critically review these related problems and provide recommendations for improving safety performance in the RMAA sector.
Resumo:
At common law, a duty of care may be owed to a claimant who suffers nervous shock or pure mental harm due to witnessing, or hearing about, physical injury caused to another due to a defendant’s negligence. “Pure mental harm” is the ‘impairment of a person’s mental condition’ that is not suffered as a consequence of any other kind of personal injury to them. However, as many accidents have the potential to create a wide circle of mental suffering to bystanders, family members or others not physically injured themselves, it has traditionally been ‘thought impolitic that everybody so affected should be able to recover damages from the tortfeasor.’ ‘To allow such extended recovery would stretch liability too far.’ Nevertheless, whilst adopting a restrictive approach to liability, the common law courts have recognised that a defendant might owe a duty in relation to the pure mental harm suffered by one who foreseeably attends an accident scene to rescue another from a situation created by the defendant’s negligence.