883 resultados para OpenCV Computer Vision Object Detection Automatic Counting


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There have been two main approaches to feature detection in human and computer vision - based either on the luminance distribution and its spatial derivatives, or on the spatial distribution of local contrast energy. Thus, bars and edges might arise from peaks of luminance and luminance gradient respectively, or bars and edges might be found at peaks of local energy, where local phases are aligned across spatial frequency. This basic issue of definition is important because it guides more detailed models and interpretations of early vision. Which approach better describes the perceived positions of features in images? We used the class of 1-D images defined by Morrone and Burr in which the amplitude spectrum is that of a (partially blurred) square-wave and all Fourier components have a common phase. Observers used a cursor to mark where bars and edges were seen for different test phases (Experiment 1) or judged the spatial alignment of contours that had different phases (e.g. 0 degrees and 45 degrees ; Experiment 2). The feature positions defined by both tasks shifted systematically to the left or right according to the sign of the phase offset, increasing with the degree of blur. These shifts were well predicted by the location of luminance peaks (bars) and gradient peaks (edges), but not by energy peaks which (by design) predicted no shift at all. These results encourage models based on a Gaussian-derivative framework, but do not support the idea that human vision uses points of phase alignment to find local, first-order features. Nevertheless, we argue that both approaches are presently incomplete and a better understanding of early vision may combine insights from both. (C)2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a video-based system which interactively captures the geometry of a 3D object in the form of a point cloud, then recognizes and registers known objects in this point cloud in a matter of seconds (fig. 1). In order to achieve interactive speed, we exploit both efficient inference algorithms and parallel computation, often on a GPU. The system can be broken down into two distinct phases: geometry capture, and object inference. We now discuss these in further detail. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graph-based representations have been used with considerable success in computer vision in the abstraction and recognition of object shape and scene structure. Despite this, the methodology available for learning structural representations from sets of training examples is relatively limited. In this paper we take a simple yet effective Bayesian approach to attributed graph learning. We present a naïve node-observation model, where we make the important assumption that the observation of each node and each edge is independent of the others, then we propose an EM-like approach to learn a mixture of these models and a Minimum Message Length criterion for components selection. Moreover, in order to avoid the bias that could arise with a single estimation of the node correspondences, we decide to estimate the sampling probability over all the possible matches. Finally we show the utility of the proposed approach on popular computer vision tasks such as 2D and 3D shape recognition. © 2011 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the importance of color processing in computer vision and computer graphics, estimating and rendering illumination spectral reflectance of image scenes is important to advance the capability of a large class of applications such as scene reconstruction, rendering, surface segmentation, object recognition, and reflectance estimation. Consequently, this dissertation proposes effective methods for reflection components separation and rendering in single scene images. Based on the dichromatic reflectance model, a novel decomposition technique, named the Mean-Shift Decomposition (MSD) method, is introduced to separate the specular from diffuse reflectance components. This technique provides a direct access to surface shape information through diffuse shading pixel isolation. More importantly, this process does not require any local color segmentation process, which differs from the traditional methods that operate by aggregating color information along each image plane. ^ Exploiting the merits of the MSD method, a scene illumination rendering technique is designed to estimate the relative contributing specular reflectance attributes of a scene image. The image feature subset targeted provides a direct access to the surface illumination information, while a newly introduced efficient rendering method reshapes the dynamic range distribution of the specular reflectance components over each image color channel. This image enhancement technique renders the scene illumination reflection effectively without altering the scene’s surface diffuse attributes contributing to realistic rendering effects. ^ As an ancillary contribution, an effective color constancy algorithm based on the dichromatic reflectance model was also developed. This algorithm selects image highlights in order to extract the prominent surface reflectance that reproduces the exact illumination chromaticity. This evaluation is presented using a novel voting scheme technique based on histogram analysis. ^ In each of the three main contributions, empirical evaluations were performed on synthetic and real-world image scenes taken from three different color image datasets. The experimental results show over 90% accuracy in illumination estimation contributing to near real world illumination rendering effects. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents an analysis of the behavior of some algorithms usually available in stereo correspondence literature, with full HD images (1920x1080 pixels) to establish, within the precision dilemma versus runtime applications which these methods can be better used. The images are obtained by a system composed of a stereo camera coupled to a computer via a capture board. The OpenCV library is used for computer vision operations and processing images involved. The algorithms discussed are an overall method of search for matching blocks with the Sum of the Absolute Value of the difference (Sum of Absolute Differences - SAD), a global technique based on cutting energy graph cuts, and a so-called matching technique semi -global. The criteria for analysis are processing time, the consumption of heap memory and the mean absolute error of disparity maps generated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by progressive muscle weakness that leads the patient to death, usually due to respiratory complications. Thus, as the disease progresses the patient will require noninvasive ventilation (NIV) and constant monitoring. This paper presents a distributed architecture for homecare monitoring of nocturnal NIV in patients with ALS. The implementation of this architecture used single board computers and mobile devices placed in patient’s homes, to display alert messages for caregivers and a web server for remote monitoring by the healthcare staff. The architecture used a software based on fuzzy logic and computer vision to capture data from a mechanical ventilator screen and generate alert messages with instructions for caregivers. The monitoring was performed on 29 patients for 7 con-tinuous hours daily during 5 days generating a total of 126000 samples for each variable monitored at a sampling rate of one sample per second. The system was evaluated regarding the rate of hits for character recognition and its correction through an algorithm for the detection and correction of errors. Furthermore, a healthcare team evaluated regarding the time intervals at which the alert messages were generated and the correctness of such messages. Thus, the system showed an average hit rate of 98.72%, and in the worst case 98.39%. As for the message to be generated, the system also agreed 100% to the overall assessment, and there was disagreement in only 2 cases with one of the physician evaluators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by progressive muscle weakness that leads the patient to death, usually due to respiratory complications. Thus, as the disease progresses the patient will require noninvasive ventilation (NIV) and constant monitoring. This paper presents a distributed architecture for homecare monitoring of nocturnal NIV in patients with ALS. The implementation of this architecture used single board computers and mobile devices placed in patient’s homes, to display alert messages for caregivers and a web server for remote monitoring by the healthcare staff. The architecture used a software based on fuzzy logic and computer vision to capture data from a mechanical ventilator screen and generate alert messages with instructions for caregivers. The monitoring was performed on 29 patients for 7 con-tinuous hours daily during 5 days generating a total of 126000 samples for each variable monitored at a sampling rate of one sample per second. The system was evaluated regarding the rate of hits for character recognition and its correction through an algorithm for the detection and correction of errors. Furthermore, a healthcare team evaluated regarding the time intervals at which the alert messages were generated and the correctness of such messages. Thus, the system showed an average hit rate of 98.72%, and in the worst case 98.39%. As for the message to be generated, the system also agreed 100% to the overall assessment, and there was disagreement in only 2 cases with one of the physician evaluators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this work was to enable the recognition of human gestures through the development of a computer program. The program created captures the gestures executed by the user through a camera attached to the computer and sends it to the robot command referring to the gesture. They were interpreted in total ve gestures made by human hand. The software (developed in C ++) widely used the computer vision concepts and open source library OpenCV that directly impact the overall e ciency of the control of mobile robots. The computer vision concepts take into account the use of lters to smooth/blur the image noise reduction, color space to better suit the developer's desktop as well as useful information for manipulating digital images. The OpenCV library was essential in creating the project because it was possible to use various functions/procedures for complete control lters, image borders, image area, the geometric center of borders, exchange of color spaces, convex hull and convexity defect, plus all the necessary means for the characterization of imaged features. During the development of the software was the appearance of several problems, as false positives (noise), underperforming the insertion of various lters with sizes oversized masks, as well as problems arising from the choice of color space for processing human skin tones. However, after the development of seven versions of the control software, it was possible to minimize the occurrence of false positives due to a better use of lters combined with a well-dimensioned mask size (tested at run time) all associated with a programming logic that has been perfected over the construction of the seven versions. After all the development is managed software that met the established requirements. After the completion of the control software, it was observed that the overall e ectiveness of the various programs, highlighting in particular the V programs: 84.75 %, with VI: 93.00 % and VII with: 94.67 % showed that the nal program performed well in interpreting gestures, proving that it was possible the mobile robot control through human gestures without the need for external accessories to give it a better mobility and cost savings for maintain such a system. The great merit of the program was to assist capacity in demystifying the man set/machine therefore uses an easy and intuitive interface for control of mobile robots. Another important feature observed is that to control the mobile robot is not necessary to be close to the same, as to control the equipment is necessary to receive only the address that the Robotino passes to the program via network or Wi-Fi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo scopo della tesi è creare un’architettura in FPGA in grado di ricavare informazioni 3D da una coppia di sensori stereo. La pipeline è stata realizzata utilizzando il System-on-Chip Zynq, che permette una stretta interazione tra la parte hardware realizzata in FPGA e la CPU. Dopo uno studio preliminare degli strumenti hardware e software, è stata realizzata l’architettura base per la scrittura e la lettura di immagini nella memoria DDR dello Zynq. In seguito l’attenzione si è spostata sull’implementazione di algoritmi stereo (rettificazione e stereo matching) su FPGA e nella realizzazione di una pipeline in grado di ricavare accurate mappe di disparità in tempo reale acquisendo le immagini da una camera stereo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questa tesi si occupa dell’estensione di un framework software finalizzato all'individuazione e al tracciamento di persone in una scena ripresa da telecamera stereoscopica. In primo luogo è rimossa la necessità di una calibrazione manuale offline del sistema sfruttando algoritmi che consentono di individuare, a partire da un fotogramma acquisito dalla camera, il piano su cui i soggetti tracciati si muovono. Inoltre, è introdotto un modulo software basato su deep learning con lo scopo di migliorare la precisione del tracciamento. Questo componente, che è in grado di individuare le teste presenti in un fotogramma, consente ridurre i dati analizzati al solo intorno della posizione effettiva di una persona, escludendo oggetti che l’algoritmo di tracciamento sarebbe portato a individuare come persone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photometric Stereo is a powerful image based 3D reconstruction technique that has recently been used to obtain very high quality reconstructions. However, in its classic form, Photometric Stereo suffers from two main limitations: Firstly, one needs to obtain images of the 3D scene under multiple different illuminations. As a result the 3D scene needs to remain static during illumination changes, which prohibits the reconstruction of deforming objects. Secondly, the images obtained must be from a single viewpoint. This leads to depth-map based 2.5 reconstructions, instead of full 3D surfaces. The aim of this Chapter is to show how these limitations can be alleviated, leading to the derivation of two practical 3D acquisition systems: The first one, based on the powerful Coloured Light Photometric Stereo method can be used to reconstruct moving objects such as cloth or human faces. The second, permits the complete 3D reconstruction of challenging objects such as porcelain vases. In addition to algorithmic details, the Chapter pays attention to practical issues such as setup calibration, detection and correction of self and cast shadows. We provide several evaluation experiments as well as reconstruction results. © 2010 Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current state of the art techniques for landmine detection in ground penetrating radar (GPR) utilize statistical methods to identify characteristics of a landmine response. This research makes use of 2-D slices of data in which subsurface landmine responses have hyperbolic shapes. Various methods from the field of visual image processing are adapted to the 2-D GPR data, producing superior landmine detection results. This research goes on to develop a physics-based GPR augmentation method motivated by current advances in visual object detection. This GPR specific augmentation is used to mitigate issues caused by insufficient training sets. This work shows that augmentation improves detection performance under training conditions that are normally very difficult. Finally, this work introduces the use of convolutional neural networks as a method to learn feature extraction parameters. These learned convolutional features outperform hand-designed features in GPR detection tasks. This work presents a number of methods, both borrowed from and motivated by the substantial work in visual image processing. The methods developed and presented in this work show an improvement in overall detection performance and introduce a method to improve the robustness of statistical classification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]This paper describes an Active Vision System whose design assumes a distinction between fast or reactive and slow or background processes. Fast processes need to operate in cycles with critical timeouts that may affect system stability. While slow processes, though necessary, do not compromise system stability if its execution is delayed. Based on this simple taxonomy, a control architecture has been proposed and a prototype implemented that is able to track people in real-time with a robotic head while trying to identify the target. In this system, the tracking module is considered as the reactive part of the system while person identification is considered a background task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]Active Vision Systems can be considered as dynamical systems which close the loop around artificial visual perception, controlling camera parameters, motion and also controlling processing to simplify, accelerate and do more robust visual perception. Research and Development in Active Vision Systems [Aloi87], [Bajc88] is a main area of interest in Computer Vision, mainly by its potential application in different scenarios where real-time performance is needed such as robot navigation, surveillance, visual inspection, among many others. Several systems have been developed during last years using robotic-heads for this purpose...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Ordnance Survey, our national mapping organisation, collects vast amounts of high-resolution aerial imagery covering the entirety of the country. Currently, photogrammetrists and surveyors use this to manually capture real-world objects and characteristics for a relatively small number of features. Arguably, the vast archive of imagery that we have obtained portraying the whole of Great Britain is highly underutilised and could be ‘mined’ for much more information. Over the last year the ImageLearn project has investigated the potential of "representation learning" to automatically extract relevant features from aerial imagery. Representation learning is a form of data-mining in which the feature-extractors are learned using machine-learning techniques, rather than being manually defined. At the beginning of the project we conjectured that representations learned could help with processes such as object detection and identification, change detection and social landscape regionalisation of Britain. This seminar will give an overview of the project and highlight some of our research results.