965 resultados para Oocytary maturation
Resumo:
After a retrovirus particle is released from the cell, the dimeric genomic RNA undergoes a change in conformation. We have previously proposed that this change, termed maturation of the dimer, is due to the action of nucleocapsid (NC) protein on the RNA within the virus particle. We now report that treatment of a 345-base synthetic fragment of Harvey sarcoma virus RNA with recombinant or synthetic HIV-1 NC protein converts a less stable form of dimeric RNA to a more stable form. This phenomenon thus appears to reproduce the maturation of dimeric retroviral RNA in a completely defined system in vitro. To our knowledge, maturation of dimeric RNA within a retrovirus particle is the first example of action of an "RNA chaperone" protein in vivo. Studies with mutant NC proteins suggest that the activity depends upon basic amino acid residues flanking the N-terminal zinc finger and upon residues within the N-terminal finger, including an aromatic amino acid, but do not require the zinc finger structures themselves.
Resumo:
Mitogen-activated protein kinase (MAPK) is selectively activated by injecting either mos or MAPK kinase (mek) RNA into immature mouse oocytes maintained in the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). IBMX arrests oocyte maturation, but Mos (or MEK) overexpression overrides this block. Under these conditions, meiosis I is significantly prolonged, and MAPK becomes fully activated in the absence of p34cdc2 kinase or maturation-promoting factor. In these oocytes, large openings form in the germinal vesicle adjacent to condensing chromatin, and microtubule arrays, which stain for both MAPK and centrosomal proteins, nucleate from these regions. Maturation-promoting factor activation occurs later, concomitant with germinal vesicle breakdown, the contraction of the microtubule arrays into a precursor of the spindle, and the redistribution of the centrosomal proteins into the newly forming spindle poles. These studies define important new functions for the Mos/MAPK cascade in mouse oocyte maturation and, under these conditions, reveal novel detail of the early stages of oocyte meiosis I.
Resumo:
Endoproteolytic processing of the human protein C (HPC) precursor to its mature form involves cleavage of the propeptide after amino acids Lys-2-Arg-1 and removal of a Lys156-Arg157 dipeptide connecting the light and heavy chains. This processing was inefficient in the mammary gland of transgenic mice and pigs. We hypothesized that the protein processing capacity of specific animal organs may be improved by the coexpression of selected processing enzymes. We tested this by targeting expression of the human proprotein processing enzyme, named paired basic amino acid cleaving enzyme (PACE)/furin, or an enzymatically inactive mutant, PACEM, to the mouse mammary gland. In contrast to mice expressing HPC alone, or to HPC/PACEM bigenic mice, coexpression of PACE with HPC resulted in efficient conversion of the precursor to mature protein, with cleavage at the appropriate sites. These results suggest the involvement of PACE in the processing of HPC in vivo and represent an example of the engineering of animal organs into bioreactors with enhanced protein processing capacity.
Resumo:
Production of infectious human immunodeficiency virus (HIV) requires proper polyprotein processing by the dimeric viral protease. The trans-dominant inhibitory activity of a defective protease monomer with the active site Asp-25 changed to Asn was measured by transient transfection. A proviral plasmid that included the drug-selectable Escherichia coli gpt gene was used to deliver the wild-type (wt) or mutant proteases to cultured cells. Coexpression of the wt proviral DNA (HIV-gpt) with increasing amounts of the mutant proviral DNA (HIV-gpt D25N) results in a concomitant decrease in proteolytic activity monitored by in vivo viral polyprotein processing. The viral particles resulting from inactivation of the protease were mostly immature, consisting predominantly of unprocessed p55gag and p160gag-pol polyproteins. In the presence of HIV-1 gp160 env, the number of secreted noninfectious particles correlated with the presence of increasing amounts of the defective protease. Greater than 97% reduction in infectivity was observed at a 1:6 ratio of wt to defective protease DNA. This provides an estimate of the level of inhibition required for effectively preventing virion processing. Stable expression of the defective protease in monkey cells reduced the yield of infectious particles from these cells by 90% upon transfection with the wt proviral DNA. These results show that defective subunits of the viral protease exert a trans-dominant inhibitory effect resulting from the formation of catalytically compromised heterodimers in vivo, ultimately yielding noninfectious viral particles.
Resumo:
The transcription factor GATA-1 recognizes a consensus motif present in regulatory regions of numerous erythroid-expressed genes. Mouse embryonic stem cells lacking GATA-1 cannot form mature red blood cells in vivo. In vitro differentiation of GATA-1- embryonic stem cells gives rise to a population of committed erythroid precursors that exhibit developmental arrest and death. We show here that the demise of GATA-1- erythroid cells is accompanied by several features characteristics of apoptosis. This process occurs despite normal expression of all known GATA target genes examined, including the erythropoietin receptor, and independent of detectable accumulation of the tumor suppressor protein p53. Thus, in addition to its established role in regulating genes that define the erythroid phenotype, GATA-1 also supports the viability of red cell precursors by suppressing apoptosis. These results illustrate the multifunctional nature of GATA-1 and suggest a mechanism by which other hematopoietic transcription factors may ensure the development of specific lineages.
Resumo:
Nuclear-encoded proteins targeted to the chloroplast are typically synthesized with N-terminal transit peptides which are proteolytically removed upon import. Structurally related proteins of 145 and 143 kDa copurify with a soluble chloroplast processing enzyme (CPE) that cleaves the precursor for the major light-harvesting chlorophyll a/b binding protein and have been implicated in the maturation of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and acyl carrier protein. The 145- and 143-kDa proteins have not been found as a heterodimer and thus may represent functionally independent isoforms encoded by separate genes. Here we describe the primary structure of a 140-kDa polypeptide encoded by cDNAs isolated by using antibodies raised against the 145/143-kDa doublet. The 140-kDa polypeptide contains a transit peptide, and strikingly, a His-Xaa-Xaa-Glu-His zinc-binding motif that is conserved in a recently recognized family of metalloendopeptidases, which includes Escherichia coli protease III, insulin-degrading enzyme, and subunit beta of the mitochondrial processing peptidase. Identity of 25-30%, concentrated near the N terminus of the 140-kDa polypeptide, is found with these proteases. Expression of CPE in leaves is not light dependent. Indeed, transcripts are present in dark-grown plants, and the 145/143-kDa doublet and proteolytic activity are both found in etioplasts, as well as in root plastids. Thus, CPE appears to be a necessary component of the import machinery in photosynthetic and nonphotosynthetic tissues, and it may function as a general stromal processing peptidase in plastids.
Resumo:
The maturation of 5S RNA in Escherichia coli is poorly understood. Although it is known that large precursors of 5S RNA accumulate in mutant cells lacking the endoribonuclease-RNase E, almost nothing is known about how the mature 5' and 3' termini of these molecules are generated. We have examined 5S RNA maturation in wild-type and single- or multiple-exoribonuclease-deficient cells by Northern blot and primer-extension analysis. Our results indicate that no mature 5S RNA is made in RNase T-deficient strains. Rather, 5S RNA precursors containing predominantly 2 extra nucleotides at the 3' end accumulate. Apparently, these 5S RNAs are functional inasmuch as mutant cells are viable, growing only slightly slower than wild type. Purified RNase T can remove the extra 3' residues, showing that it is directly involved in the trimming reaction. In contrast, mutations affecting other 3' exoribonucleases have no effect on 5S RNA maturation. Approximately 90% of the 5S RNAs in both wild-type and RNase T- cells contain mature 5' termini, indicating that 5' processing is independent of RNase T action. These data identify the enzyme responsible for generating the mature 3' terminus of 5S RNA molecules and also demonstrate that a completely processed 5S RNA molecule is not essential for cell survival.
Resumo:
The green Cu-NirK from Haloferax mediterranei (Cu-NirK) has been expressed, refolded and retrieved as a trimeric enzyme using an expression method developed for halophilic Archaea. This method utilizes Haloferax volcanii as a halophilic host and an expression vector with a constitutive and strong promoter. The enzymatic activity of recombinant Cu-NirK was detected in both cellular fractions (cytoplasmic fraction and membranes) and in the culture media. The characterization of the enzyme isolated from the cytoplasmic fraction as well as the culture media revealed important differences in the primary structure of both forms indicating that Hfx. mediterranei could carry out a maturation and exportation process within the cell before the protein is exported to the S-layer. Several conserved signals found in Cu-NirK from Hfx. mediterranei sequence indicate that these processes are closely related to the Tat system. Furthermore, the N-terminal sequence of the two Cu-NirK subunits constituting different isoforms revealed that translation of this protein could begin at two different points, identifying two possible start codons. The hypothesis proposed in this work for halophilic Cu-NirK processing and exportation via the Tat system represents the first approximation of this mechanism in the Halobacteriaceae family and in Prokarya in general.
Resumo:
Bibliography: p. 69-70.
Resumo:
Issued Nov. 1974.
Resumo:
Transgenic mice expressing the E7 protein of HPV16 from the keratin 14 promoter demonstrate increasing thymic hypertrophy with age. This hypertrophy is associated with increased absolute numbers of all thymocyte types, and with increased cortical and medullary cellularity. In the thymic medulla, increased compartmentalization of the major thymic stromal cell types and expansion of thymic epithelial cell population is observed. Neither an increased rate of immature thymocyte division nor a decreased rate of immature thymocyte death was able to account for the observed hypertrophy. Thymocytes with reduced levels of expression of CD4 and/or CD8 were more abundant in transgenic (tg) mice and became increasingly more so with age. These thymic SP and DP populations with reduced levels of CD4 and/or CD8 markers had a lower rate of apoptosis in the tg than in the non-tg mice. The rate of export of mature thymocytes to peripheral lymphoid organs was less in tg animals relative to the pool of available mature cells, particularly for the increasingly abundant CD4lo population. We therefore suggest that mature thymocytes that would normally die in the thymus gradually accumulated in E7 transgenic animals, perhaps as a consequence of exposure to a hypertrophied E7-expressing thymic epithelium or to factors secreted by this expanded thymic stromal cell population. The K14E7 transgenic mouse thus provides a unique model to study effects of the thymic epithelial cell compartment on thymus development and involution.
Resumo:
Immunotherapy of tumours using T cells expanded in vitro has met with mixed clinical success suggesting that a greater understanding of tumour/T-cell interaction is required. We used a HPV16E7 oncoprotein-based mouse tumour model to study this further. In this study, we demonstrate that a HPV16E7 tumour passes through at least three stages of immune susceptibility over time. At the earliest time point, infusion of intravenous immune cells fails to control tumour growth although the same cells given subcutaneously at the tumour site are effective. In a second stage, the tumour becomes resistant to subcutaneous infusion of cells but is now susceptible to both adjuvant activated and HPV16E7-specific immune cells transferred intravenously. In the last phase, the tumour is susceptible to intravenous transfer of HPV16E7-specific cells, but not adjuvant-activated immune cells. The requirement for IFN-gamma and perforin also changes with each stage of tumour development. Our data suggest that effective adoptive T-cell therapy of tumour will need to be matched with the stage of tumour development.
Resumo:
Acrosomal development in the early spermatid of the rufous hare wallaby shows evidence of formation of an acrosomal granule, similar to that found in eutherian mammals, the Phascolarctidae and Vombatidae. Unlike the other members of the Macropodidae so far examined, the acrosome of this species appears to be fully compacted at spermiation and extends evenly over 90% of the dorsal aspect of the nucleus. During spermiogenesis, the nucleus of the rufous hare wallaby spermatid showed evidence of uneven condensation of chromatin; this may also be related to the appearance of unusual nucleoplasm evaginations from the surface of the fully condensed spermatid. This study was unable to find evidence of the presence of Sertoli cell spurs or nuclear rotation during spermiogenesis in the rufous hare wallaby. The majority of spermatozoa immediately before spermiation had a nucleus that was essentially perpendicular to the long axis of the sperm tail. Nuclei of spermatozoa found in the process of being released or isolated in the lumen of the seminiferous tubule were rotated almost parallel to the long axis of the flagellum; complete parallel alignment occurred during epididymal maturation. At spermiation spermatozoa have characteristically small cytoplasmic remnants compared to those of other macropods. Unlike the majority of macropodid spermatozoa so far described, the spermatozoa of the rufous hare wallaby showed little evidence of morphological change during epididymal transit. There was no formation of a fibre network around the midpiece or of plasma membrane specializations in this region; the only notable change was a distinctive flattening of midpiece mitochondria and scalloping of the anterior mitochondrial sheath to accommodate the sperm head. Preliminary evidence from spermiogenesis and epididymal sperm maturation supports the classification of the rufous hare wallaby as a separate genus but also indicates that its higher taxonomic position may need to be re-evaluated.
Resumo:
Cytochrome c biogenesis in Escherichia coli is a complex process requiring at least eight genes (ccmABC DEFGH). One of these genes, ccmG, encodes a thioredoxin-like protein with unusually specific redox activity. Here, we investigate the basis for CcmG function and demonstrate the importance of acidic residues surrounding the redox-active center.
Resumo:
Although neural progenitor cells (NPCs) may provide a source of new neurons to alleviate neural trauma, little is known about their electrical properties as they differentiate. We have previously shown that single NPCs from the adult rat hippocampus can be cloned in the presence of heparan sulphate chains purified from the hippocampus, and that these cells can be pushed into a proliferative phenotype with the mitogen FGF2 [Chipperfield, H., Bedi, K.S., Cool, S.M. & Nurcombe, V. (2002) Int. J. Dev. Biol., 46, 661-670]. In this study, the active and passive electrical properties of both undifferentiated and differentiated adult hippocampal NPCs, from 0 to 12 days in vitro as single-cell preparations, were investigated. Sparsely plated, undifferentiated NPCs had a resting membrane potential of approximate to -90 mV and were electrically inexcitable. In > 70%, ATP and benzoylbenzoyl-ATP evoked an inward current and membrane depolarization, whereas acetylcholine, noradrenaline, glutamate and GABA had no detectable effect. In Fura-2-loaded undifferentiated NPCs, ATP and benzoylbenzoyl-ATP evoked a transient increase in the intracellular free Ca2+ concentration, which was dependent on extracellular Ca2+ and was inhibited reversibly by pyridoxalphosphate-6-azophenyl-2'-4'-disulphonic acid (PPADS), a P2 receptor antagonist. After differentiation, NPC-derived neurons became electrically excitable, expressing voltage-dependent TTX-sensitive Na+ channels, low- and high-voltage-activated Ca2+ channels and delayed-rectifier K+ channels. Differentiated cells also possessed functional glutamate, GABA, glycine and purinergic (P2X) receptors. Appearance of voltage-dependent and ligand-gated ion channels appears to be an important early step in the differentiation of NPCs.