909 resultados para Olea europaea


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean Drilling Program Site 658 at 21°N off northwest Africa has a high sedimentation rate and a high concentration of pollen grains and is thus very suitable for detailed pollen analysis. The time scale for the upper 100 m (the last 670 k.y.) of Site 658 is based on biostratigraphic data and isotope stratigraphy. The pollen record has been divided into 34 zones. These are classified into 7 zone types covering a range from very arid to rather humid conditions. The sequence shows a long-term climatic decline: strong glacial stages were found only after 480 k.y. and strong interglacial stages only before 280 k.y. The Site 658 record correlates well with a terrestrial sequence from northern Greece, although both records differ in their response to global climatic change. Spectral analysis shows a 100- and a 42-k.y. period in the curves of pollen brought in by the northwest trade winds and only a 42-k.y. period in the curves of pollen mostly transported by the African Easterly Jet. A 31-k.y. period is found in the curves for Ephedra and Chenopodiaceae-Amaranthaceae. In addition, Ephedra shows a 54-k.y. period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lake Voulkaria is situated in northwestern Greece in the Prefecture of Etoloakarnania, 6 km SW of the city of Vonitsa and 10 km east of the northern tip of the island of Levkás (Leukás, Lefkada). The lake is separated from the Ionian Sea on the West by a narrow limestone ridge ca 10 m high and has a size of 940 ha. An almost continuous fringe of Phragmites surrounds the open water. This reed bank is up to 500 m wide along the southern shore of the lake. Water depth is low, predominantly less than 2 m. In the south-eastern part of the lake a maximum depth of 3.1 m was measured in September 1997.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution of pollen in marine sediments is used to reconstruct pathways of terrigenous input to the oceans and provides a record of vegetation change on adjacent continents. The wind transport routes of aeolian pollen is comprehensively illustrated by clusters of trajectories. Isobaric, 4-day backward trajectories are calculated using the modelled wind-field of ECHAM3, and are clustered on a seasonal basis to estimate the main pathways of aeolian particles to sites of marine cores in the south-eastern Atlantic. Trajectories and clusters based on the modelled wind-field of the Last Glacial Maximum hardly differ from those of the present-day. Trajectory clusters show three regional, and two seasonal patterns, determining the pathways of aeolian pollen transport into the south-eastern Atlantic ocean. Mainly, transport out of the continent occurs during austral fall and winter, when easterly and south-easterly winds prevail. South of 25°S, winds blow mostly from the west and southwest, and aeolian terrestrial input is very low. Generally, a good latitudinal correspondence exists between the distribution patterns of pollen in marine surface sediments and the occurrence of the source plants on the adjacent continent. The northern Angola Basin receives pollen and spores from the Congolian and Zambezian forests mainly through river discharge. The Zambezian vegetation zone is the main source area for wind-blown pollen in sediments of the Angola Basin, while the semi-desert and desert areas are the main sources for pollen in sediments of the Walvis Basin and on the Walvis Ridge. A transect of six marine pollen records along the south-western African coast indicates considerable changes in the vegetation of southern Africa between glacial and interglacial periods. Important changes in the vegetation are the decline of forests in equatorial Africa and the north of southern Africa and a northward shift of winter rain vegetation along the western escarpment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution of pollen in marine sediments is used to record vegetation changes over the past 30,000 years on the adjacent continent. A transect of marine pollen sequences from the mouth of the river Congo (~5°S) to Walvis Bay and Lüderitz (~25°S) shows vegetation changes in Congo, Angola and Namibia from the last glacial period into the Holocene. The comparison of pollen records from different latitudes provides information about the latitudinal shift of open forest and savannahs (Poaceae pollen), the extension of lowland forest (rain forest pollen) and Afromontane forest (Podocarpus pollen), and the position of the desert fringe (pollen of Caryophyllaceae, Chenopodiaceae and Amaranthaceae). High Cyperaceae pollen percentages in sediments from the last glacial period off the mouth of the river Congo suggest the presence of open swamps rather than savannah vegetation in the Congo Basin. Pollen from Restionaceae in combination with Stoebe-type pollen (probably from Elytropappus) indicates a possible northwards extension of winter rain vegetation during the last glacial period. The record of Rhizophora (mangrove) pollen is linked to erosion of the continental shelf and sea-level rise. Pollen influx is highest off river mouths (10-2000 grains year**-1 cm**-2), close to the coast (300-6000 grains year**-1 cm**-2), but is an order of magnitude lower at sites situated far from the continent (<10 grains year**-1 cm**-2).