943 resultados para Obesity. Cardiopulmonary exercise test. uptake oxygen. incremental test


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The perioperative management of patients with mediastinal masses is a special clinical challenge in our field. Even though regional anaesthesia is normally the first choice, in some cases it is not feasible due to the method of operation. In these cases general anaesthesia is the second option but can lead to respiratory and haemodynamic decompensation due to tumor-associated compression syndrome (mediastinal mass syndrome). The appropriate treatment begins with the preoperative risk classification on the basis of clinical and radiological findings. In addition to anamnesis, chest radiograph, and CT, dynamical methods (e.g. pneumotachography and echocardiography) should be applied to verify possible intraoperative compression syndromes. The induction of general anaesthesia is to be realized in awake-fiberoptic intubation with introduction of the tube via nasal route while maintaining the spontaneous breathing of the patient. The anaesthesia continues with short effective agents applied inhalative or iv. If possible from the point of operation, agents of muscle relaxation are not to be applied. If the anaesthesia risk is classified as uncertain or unsafe, depending on the location of tumor compression (tracheobronchial tree, pulmonary artery, superior vena cava), alternative techniques of securing the respiratory tract (different tubes, rigid bronchoscope) and cardiopulmonary bypass with extracorporal oxygen supply are prepared. For patients with severe clinical symptoms and extensive mediastinal mass, the preoperative cannulation of femoral vessels is also recommended. In addition to fulfilling technical and personnel requirements, an interdisciplinary cooperation of participating fields is the most important prerequisite for the optimal treatment of patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The objective of this study was to investigate changes in body weight, BMI, body composition, and fat distribution among freshman women during their 1st year of college. Research Methods and Procedures: Freshman women during the 2004 to 2005 academic year were recruited to participate. The initial baseline visit occurred within the first 6 weeks of the fall 2004 semester, with the follow-up visit occurring during the last 6 weeks of the spring 2005 semester. At each visit, height, weight, BMI, waist and hip circumferences, and body composition (by DXA) were obtained. Results: One hundred thirty-seven participants completed both the fall and spring visits. Significant (p < 0.0001) increases between the fall and spring visits were observed for body weight (58.6 vs. 59.6 kg), BMI (21.9 vs. 22.3), percentage body fat (28.9 vs. 29.7), total fat mass (16.9 vs. 17.7 kg), fat-free mass (38.1 vs. 38.4 kg), waist circumference (69.4 vs. 70.3 cm), and hip circumference (97.4 vs. 98.6 cm), with no significant difference observed in the waist-to-hip ratio (0.71 vs. 0.71; p = 0.78). Discussion: Although statistically significant, changes in body weight, body composition, and fat mass were modest for women during their freshman year of college. These results do not support the purported freshman 15 weight gain publicized in the popular media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE: As more preterm infants recover from severe bronchopulmonary dysplasia (BPD), it is critical to understand the clinical consequences of this condition on the lung health of adult survivors.

OBJECTIVES: To assess structural and functional lung parameters in young adult BPD survivors and preterm and term controls Methods: Young adult survivors of BPD (mean age 24) underwent spirometry, lung volumes, transfer factor, lung clearance index and fractional exhaled nitric oxide measurements together with high-resolution chest tomographic (CT) imaging and cardiopulmonary exercise testing.

MEASUREMENTS AND MAIN RESULTS: 25 adult BPD survivors, (mean ± SD gestational age 26.8 ± 2.3 weeks; birth weight 866 ± 255 g), 24 adult prematurely born non-BPD controls (gestational age 30.6 ± 1.9 weeks; birth weight 1234 ± 207 g) and 25 adult term birth control subjects (gestational age 38.5 ± 0.9 weeks; and birth weight 3569 ± 2979 g) were studied. BPD subjects were more likely to be wakened by cough (OR 9.7, 95% CI: 1.8 to 52.6), p<0.01), wheeze and breathlessness (OR 12.2, 95%CI: 1.3 to 112), p<0.05) than term controls after adjusting for sex and current smoking. Preterm subjects had greater airways obstruction than term subjects. BPD subjects had significantly lower values for FEV1 and FEF25-75 (% predicted and z scores) than term controls (both p<0.001). Although non-BPD subjects also had lower spirometric values than term controls, none of the differences reached statistical significance. More BPD subjects (25%) had fixed airflow obstruction than non-BPD (12.5%) and term (0%) subjects (p=0.004). Both BPD and non-BPD subjects had significantly greater impairment in gas transfer (KCO % predicted) than term subjects (both p<0.05). Eighteen (37%) preterm participants were classified as small for gestational age (birth weight < 10th percentile for gestational age). These subjects had significantly greater impairment in FEV1 (% predicted and z scores) than those born appropriate for gestational age. BPD survivors had significantly more severe radiographic structural lung impairment than non-BPD subjects. Both preterm groups had impaired exercise capacity compared to term controls. There was a trend for greater limitation and leg discomfort in BPD survivors.

CONCLUSIONS: Adult preterm birth survivors, especially those who developed BPD, continue to experience respiratory symptoms and exhibit clinically important levels of pulmonary impairment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Currently there is a growing trend in the prevalence of overweight and obesity. This increased prevalence trend leads to an increase in the costs of health care. Objective: The aim of the present study was to analyze the effects on physical fitness and bone mineral density through an intervention program of physical activity based on rhythmic and choreographic activities in an overweight and obese population. Method: An 8-month physical activity based on rhythmic and choreographic activities was conducted in overweight and obese people. Thirty-four participants aged 50.43 ± 10.57 with a body mass index (BMI) 38.37 ± 4.82 took part in the physical activity program. This study assesses the effects of fitness, percentage of body fat and bone mineral density (BMD). Results: After an 8-month physical activity intervention program based on rhythmic and choreographic activities, significant differences were found in: percentage of body fat (p = 0.004), aerobic capacity (p = 0.023), flexibility of the lower limbs (flexibility in the right leg p = 0.029 and left leg p = 0.002), balance (p < 0.001), strength in lower limbs (p = 0..003) and strength in upper limbs (p < 0.001). Besides that, significant differences were found in parameters related with BMD such as T-Score (p = 0.025) and Z-Score (p = 0.012), Bone Quality Index (BQI) (p = 0.026) and an increase in Broadband Ultrasound Attenuation (BUA) although not a statistically significant one (p = 0.939). Conclusions: These findings suggest that a physical activity program based on rhythmic and choreographic activities can act as a preventive method of mobility and fragility, as well as preventing bone loss.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Inconsistencies about dynamic asymmetry between the on- and off-transient responses in VO2 are found in the literature. Therefore the purpose of this study was to examine VO2 on- and off-transients during moderate- and heavy-intensity cycling exercise in trained subjects. Ten men underwent an initial incremental test for the estimation of ventilatory threshold (VT) and, on different days, two bouts of square-wave exercise at moderate (<VT) and heavy (>VT) intensities. VO2 kinetics in exercise and recovery were better described by a single exponential model (<VT), or by a double exponential with two time delays (>VT). For moderate exercise, we found a symmetry of VO2 kinetics between the on- and off-transients (i.e., fundamental component), consistent with a system manifesting linear control dynamics. For heavy exercise, a slow component superimposed on the fundamental phase was expressed in both the exercise and recovery, with similar parameter estimates. But the on-transient values of the time constant were appreciably faster than the associated off-transient, and independent of the work rate imposed (<VT and >VT). Our results do not support a dynamically linear system model of VO2 during cycling exercise in the heavy-intensity domain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Buchheit, M, Al Haddad, H, Millet GP, Lepretre, PM, Newton, M, and Ahmaidi, S. Cardiorespiratory and cardiac autonomic responses to 30-15 Intermittent Fitness Test in team sport players. J Strength Cond Res 23(1): xxx-xxx, 2009-The 30-15 Intermittent Fitness Test (30-15IFT) is an attractive alternative to classic continuous incremental field tests for defining a reference velocity for interval training prescription in team sport athletes. The aim of the present study was to compare cardiorespiratory and autonomic responses to 30-15IFT with those observed during a standard continuous test (CT). In 20 team sport players (20.9 +/- 2.2 years), cardiopulmonary parameters were measured during exercise and for 10 minutes after both tests. Final running velocity, peak lactate ([La]peak), and rating of perceived exertion (RPE) were also measured. Parasympathetic function was assessed during the postexercise recovery phase via heart rate (HR) recovery time constant (HRRtau) and HR variability (HRV) vagal-related indices. At exhaustion, no difference was observed in peak oxygen uptake (&OV0312;o2peak), respiratory exchange ratio, HR, or RPE between 30-15IFT and CT. In contrast, 30-15IFT led to significantly higher minute ventilation, [La]peak, and final velocity than CT (p < 0.05 for all parameters). All maximal cardiorespiratory variables observed during both tests were moderately to well correlated (e.g., r = 0.76, p = 0.001 for &OV0312;o2peak). Regarding ventilatory thresholds (VThs), all cardiorespiratory measurements were similar and well correlated between the 2 tests. Parasympathetic function was lower after 30-15IFT than after CT, as indicated by significantly longer HHRtau (81.9 +/- 18.2 vs. 60.5 +/- 19.5 for 30-15IFT and CT, respectively, p < 0.001) and lower HRV vagal-related indices (i.e., the root mean square of successive R-R intervals differences [rMSSD]: 4.1 +/- 2.4 and 7.0 +/- 4.9 milliseconds, p < 0.05). In conclusion, the 30-15IFT is accurate for assessing VThs and &OV0312;o2peak, but it alters postexercise parasympathetic function more than a continuous incremental protocol.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We tested the hypothesis that the inability to increase cardiac output during exercise would explain the decreased rate of oxygen uptake (VO2) in recent onset, ischemia-induced heart failure rats. Nine normal control rats and 6 rats with ischemic heart failure were studied. Myocardial infarction was induced by coronary ligation. VO2 was measured during a ramp protocol test on a treadmill using a metabolic mask. Cardiac output was measured with a flow probe placed around the ascending aorta. Left ventricular end-diastolic pressure was higher in ischemic heart failure rats compared with normal control rats (17 ± 0.4 vs 8 ± 0.8 mmHg, P = 0.0001). Resting cardiac index (CI) tended to be lower in ischemic heart failure rats (P = 0.07). Resting heart rate (HR) and stroke volume index (SVI) did not differ significantly between ischemic heart failure rats and normal control rats. Peak VO2 was lower in ischemic heart failure rats (73.72 ± 7.37 vs 109.02 ± 27.87 mL min-1 kg-1, P = 0.005). The VO2 and CI responses during exercise were significantly lower in ischemic heart failure rats than in normal control rats. The temporal response of SVI, but not of HR, was significantly lower in ischemic heart failure rats than in normal control rats. Peak CI, HR, and SVI were lower in ischemic heart failure rats. The reduction in VO2 response during incremental exercise in an ischemic model of heart failure is due to the decreased cardiac output response, largely caused by depressed stroke volume kinetics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJETIVO: Determinar a acurácia das variáveis: tempo de escada (tTE), potência de escada (PTE), teste de caminhada (TC6) e volume expiratório forçado (VEF1) utilizando o consumo máximo de oxigênio (VO2máx) como padrão-ouro. MÉTODOS: Os testes foram realizados em 51 pacientes. O VEF1 foi obtido através da espirometria. O TC6 foi realizado em corredor plano de 120m. O TE foi realizado em escada de 6 lances obtendo-se tTE e PTE. O VO2máx foi obtido por ergoespirometria, utilizando o protocolo de Balke. Foram calculados a correlação linear de Pearson (r) e os valores de p, entre VO2máx e variáveis. Para o cálculo da acurácia, foram obtidos os pontos de corte, através da curva característica operacional (ROC). A estatística Kappa (k) foi utilizada para cálculo da concordância. RESULTADOS: Obteve-se as acurácias: tTE - 86%, TC6 - 80%, PTE - 71%, VEF1(L) - 67%, VEF1% - 63%. Para o tTE e TC6 combinados em paralelo, obteve-se sensibilidade de 93,5% e em série, especificidade de 96,4%. CONCLUSÃO: O tTE foi a variável que apresentou a melhor acurácia. Quando combinados o tTE e TC6 podem ter especificidade e sensibilidade próxima de 100%. Estes testes deveriam ser mais usados rotineiramente, especialmente quando a ergoespirometria para a medida de VO2máx não é disponível.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this study was to investigate whether the maximal power output (Pmax) during an incremental test was dependent on the curvature constant (W') of the power-time relationship. Thirty healthy male subjects (maximal oxygen uptake = 3.58 ± 0.40 L·min(-1)) performed a ramp incremental cycling test to determine the maximal oxygen uptake and Pmax, and 4 constant work rate tests to exhaustion to estimate 2 parameters from the modeling of the power-time relationship (i.e., critical power (CP) and W'). Afterwards, the participants were ranked according to their magnitude of W'. The median third was excluded to form a high W' group (HIGH, n = 10), and a low W' group (LOW, n = 10). Maximal oxygen uptake (3.84 ± 0.50 vs. 3.49 ± 0.37 L·min(-1)) and CP (213 ± 22 vs. 200 ± 29 W) were not significantly different between HIGH and LOW, respectively. However, Pmax was significantly greater for the HIGH (337 ± 23 W) than for the LOW (299 ± 40 W). Thus, in physically active individuals with similar aerobic parameters, W' influences the Pmax during incremental testing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study aimed at evaluating a peak oxygen uptake test as a simple diagnostic tool to assess growth-hormone deficiency (GHD) in adults. Based on the findings of multiple growth hormone (GH) samplings after the exercise, a single GH sample taken 15 min postexercise revealed high accuracy in the diagnosis of GHD in the present study. A standardized peak oxygen uptake test may, therefore, provide an accurate alternative to more invasive tests of GHD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pires, FO, Hammond, J, Lima-Silva, AE, Bertuzzi, RCM, and Kiss, MAPDM. Ventilation behavior during upper-body incremental exercise. J Strength Cond Res 25(1): 225-230, 2011-This study tested the ventilation (V(E)) behavior during upper-body incremental exercise by mathematical models that calculate 1 or 2 thresholds and compared the thresholds identified by mathematical models with V-slope, ventilatory equivalent for oxygen uptake (V(E)/(V) over dotO(2)), and ventilatory equivalent for carbon dioxide uptake (V(E)/(V) over dotCO(2)). Fourteen rock climbers underwent an upper-body incremental test on a cycle ergometer with increases of approximately 20 W.min(-1) until exhaustion at a cranking frequency of approximately 90 rpm. The V(E) data were smoothed to 10-second averages for V(E) time plotting. The bisegmental and the 3-segmental linear regression models were calculated from 1 or 2 intercepts that best shared the V(E) curve in 2 or 3 linear segments. The ventilatory threshold(s) was determined mathematically by the intercept(s) obtained by bisegmental and 3-segmental models, by V-slope model, or visually by V(E)/(V) over dotO(2) and V(E)/(V) over dotCO(2). There was no difference between bisegmental (mean square error [MSE] = 35.3 +/- 32.7 l.min(-1)) and 3-segmental (MSE = 44.9 +/- 47.8 l.min(-1)) models in fitted data. There was no difference between ventilatory threshold identified by the bisegmental (28.2 +/- 6.8 ml.kg(-1).min(-1)) and second ventilatory threshold identified by the 3-segmental (30.0 +/- 5.1 ml.kg(-1).min(-1)), V(E)/(V) over dotO(2) (28.8 +/- 5.5 ml.kg(-1).min(-1)), or V-slope (28.5 +/- 5.6 ml.kg(-1).min(-1)). However, the first ventilatory threshold identified by 3-segmental (23.1 +/- 4.9 ml.kg(-1).min(-1)) or by VE/(V) over dotO(2) (24.9 +/- 4.4 ml.kg(-1).min(-1)) was different from these 4. The V(E) behavior during upper-body exercise tends to show only 1 ventilatory threshold. These findings have practical implications because this point is frequently used for aerobic training prescription in healthy subjects, athletes, and in elderly or diseased populations. The ventilatory threshold identified by V(E) curve should be used for aerobic training prescription in healthy subjects and athletes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Samogin Lopes, FA, Menegon, EM, Franchini, E, Tricoli, V, and de M. Bertuzzi, RC. Is acute static stretching able to reduce the time to exhaustion at power output corresponding to maximal oxygen uptake? J Strength Cond Res 24(6): 1650-1656, 2010-This study analyzed the effect of an acute static stretching bout on the time to exhaustion (T(lim)) at power output corresponding to (V) over dotO(2)max. Eleven physically active male subjects (age 22.3 +/- 2.8 years, (V) over dotO(2)max 2.7 +/- 0.5 L . min(-1)) completed an incremental cycle ergometer test, 2 muscle strength tests, and 2 maximal tests to exhaustion at power output corresponding to (V) over dotO(2)max with and without a previous static stretching bout. The T(lim) was not significantly affected by the static stretching (164 +/- 28 vs. 150 +/- 26 seconds with and without stretching, respectively, p = 0.09), but the time to reach (V) over dotO(2)max (118 +/- 22 vs. 102 +/- 25 seconds), blood-lactate accumulation immediately after exercise (10.7 +/- 2.9 vs. 8.0 +/- 1.7 mmol . L(-1)), and oxygen deficit (2.4 +/- 0.9 vs. 2.1 +/- 0.7 L) were significantly reduced (p <= 0.02). Thus, an acute static stretching bout did not reduce T(lim) at power output corresponding to (V) over dotO(2)max possibly by accelerating aerobic metabolism activation at the beginning of exercise. These results suggest that coaches and practitioners involved with aerobic dependent activities may use static stretching as part of their warm-up routines without fear of diminishing high-intensity aerobic exercise performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inconsistencies about dynamic asymmetry between the on- and off-transient responses in .VO2 are found in the literature. Therefore the purpose of this study was to examine .VO2on- and off-transients during moderate- and heavy-intensity cycling exercise in trained subjects. Ten men underwent an initial incremental test for the estimation of ventilatory threshold (VT) and, on different days, two bouts of square-wave exercise at moderate (<VT) and heavy (>VT) intensities. .VO2 kinetics in exercise and recovery were better described by a single exponential model (<VT) or by a double exponential with two time delays (>VT). For moderate exercise, we found a symmetry of .VO2 kinetics between the on- and off-transients (i.e., fundamental component), consistent with a system manifesting linear control dynamics. For heavy exercise, a slow component superimposed on the fundamental phase was expressed in both the exercise and recovery, with similar parameter estimates. But the on-transient values of the time constant were appreciably faster than the associated off-transient, and independent of the work rate imposed (<VT and >VT). Our results do not support a dynamically linear system model of .VO2 during cycling exercise in the heavy-intensity domain.