947 resultados para Morphological clock
Resumo:
The focus of this article is to develop computationally efficient mathematical morphology operators on hypergraphs. To this aim we consider lattice structures on hypergraphs on which we build morphological operators. We develop a pair of dual adjunctions between the vertex set and the hyper edge set of a hypergraph H, by defining a vertex-hyperedge correspondence. This allows us to recover the classical notion of a dilation/erosion of a subset of vertices and to extend it to subhypergraphs of H. Afterward, we propose several new openings, closings, granulometries and alternate sequential filters acting (i) on the subsets of the vertex and hyperedge set of H and (ii) on the subhypergraphs of a hypergraph
Resumo:
ZnO thin films were coated on amorphous glass substrate at various temperatures in the range 160-500 0C by spray pyrolysis method. The as deposited films were characterised by using XRD and SEM. Wurtzite phase of ZnO was formed at a substrate temperature of 400 0C, highly oriented (002) phase was developed with respect to increase of substrate temperature from 450 to 500 0C. Morphological and growth mode of these films were analyzed with respect to structural orientation of films from wurtzite to highly (002) oriented phase. Present study reveals that substrate temperature was one of the important parameters which determine the crystalline quality, population of defects, grain size, orientation and morphology of the films
Resumo:
This paper describes a novel framework for automatic segmentation of primary tumors and its boundary from brain MRIs using morphological filtering techniques. This method uses T2 weighted and T1 FLAIR images. This approach is very simple, more accurate and less time consuming than existing methods. This method is tested by fifty patients of different tumor types, shapes, image intensities, sizes and produced better results. The results were validated with ground truth images by the radiologist. Segmentation of the tumor and boundary detection is important because it can be used for surgical planning, treatment planning, textural analysis, 3-Dimensional modeling and volumetric analysis
Resumo:
Resumen tomado de la publicaci??n
Resumo:
resumen tomado de la revista
Resumo:
Tidal Flats are important examples of extensive areas of natural environment that remain relatively unaffected by man. Monitoring of tidal flats is required for a variety of purposes. Remote sensing has become an established technique for the measurement of topography over tidal flats. A further requirement is to measure topographic changes in order to measure sediment budgets. To date there have been few attempts to make quantitative estimates of morphological change over tidal flat areas. This paper illustrates the use of remote sensing to measure quantitative and qualitative changes in the tidal flats of Morecambe Bay during the relatively long period 1991–2007. An understanding of the patterns of sediment transport within the Bay is of considerable interest for coastal management and defence purposes. Tidal asymmetry is considered to be the dominant cause of morphological change in the Bay, with the higher currents associated with the flood tide being the main agency moulding the channel system. Quantitative changes were measured by comparing a Digital Elevation Model (DEM) of the intertidal zone formed using the waterline technique applied to satellite Synthetic Aperture Radar (SAR) images from 1991–1994, to a second DEM constructed from airborne laser altimetry data acquired in 2005. Qualitative changes were studied using additional SAR images acquired since 2003. A significant movement of sediment from below Mean Sea Level (MSL) to above MSL was detected by comparing the two Digital Elevation Models, though the proportion of this change that could be ascribed to seasonal effects was not clear. Between 1991 and 2004 there was a migration of the Ulverston channel of the river Leven north-east by about 5 km, followed by the development of a straighter channel to the west, leaving the previous channel decoupled from the river. This is thought to be due to independent tidal and fluvial forcing mechanisms acting on the channel. The results demonstrate the effectiveness of remote sensing for measurement of long-term morphological change in tidal flat areas. An alternative use of waterlines as partial bathymetry for assimilation into a morphodynamic model of the coastal zone is also discussed.
Resumo:
A species of the hyper-parasitic bacterium Pasteuria was isolated from the root-knot nematode Meloidogyne ardenensis infecting the roots of ash (Fraxinus excelsior). It is morphologically different from some other Pasteuria pathogens of nematodes in that the spores lack a basal ring on the ventral side of the spore and have a unique clumping nature. Transmission electron microscopy (TEM) showed that the clumps of spores are not random aggregates but result from the disintegration of the suicide cells of the thalli. Sporulation within each vegetative mycelium was shown to be asynchronous. In addition to the novel morphological features 16S rRNA sequence analysis showed this to be a new species of Pasteuria which we have called P. hartismeri. Spores of P. hartismeri attach to juveniles of root-knot nematodes infecting a wide range of plants such as mint (Meloidogyne hapla), rye grass (unidentified Meloidogyne sp.) and potato (Meloidogyne fallax). (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The genus Capsicum has 20-30 species, of which only a few are cultivated. Capsicum annuum L. is the best known Capsicum all around the world, while the other species are not common outside Latin America. Since it is the best known and commercially the most valuable species, many breeding programs have been conducted on C annuum L., especially on the non-pungent vegetable types. Breeding of other species has received less attention. Therefore, this work was conducted on two species other than C. annuum that are rarely studied-C. baccatum and C. cardenasii. Other results concern linkage groups and association of the marker genes or linkage groups with the chromosomes involved in an interchange. Linkage was detected for two pairs of genes only; these were between Got-1 and Idh-1, and between Pgi-2 and Est-5. No gene was found to show a statistically significant association with chromosomes with interchanged segments.
Resumo:
To investigate flower induction in June-bearing strawberry plants, morphological changes in shoot apices and Historic H4 expression in the central zone during flower initiation were observed. Strawberry plants were placed under flower inducible, short-day conditions (23 degrees C/17 degrees C, 10 h day length) for differing number of days (8, 16, 20, 24 or 32 days) and then these plants were transferred to non-inducible, long-day conditions (25 degrees C/20 degrees C, 14 h day length). The shoot apices of plants placed under short-day conditions for 8 days were flat, similar to shoot apices of plants in the vegetative phase of development, and Histone H4 was not expressed in the central zone during the experimental period. On the other hand, the shoot apices of plants placed under short-day conditions for 16 days remained flat, similar to shoot apices of plants placed under short-day conditions for 8 days, but Histone H4 was expressed in the central zone at the end of the short-day treatment. Morphological changes in the shoot apices of these plants were observed 8 days after the change in day-length. These plants developed differentiated flower organs after they were grown for another 30 days under long-day conditions. These results indicate that changes in the expression pattern of the Histone H4 gene occur before morphological changes during flower induction and that the expression of the gene in the central zone can be used as one of the indicators of the flowering process in strawberries. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The use of nucleotide and amino acid sequences allows improved understanding of the timing of evolutionary events of life on earth. Molecular estimates of divergence times are, however, controversial and are generally much more ancient than suggested by the fossil record. The limited number of genes and species explored and pervasive variations in evolutionary rates are the most likely sources of such discrepancies. Here we compared concatenated amino acid sequences of 129 proteins from 36 eukaryotes to determine the divergence times of several major clades, including animals, fungi, plants, and various protists. Due to significant variations in their evolutionary rates, and to handle the uncertainty of the fossil record, we used a Bayesian relaxed molecular clock simultaneously calibrated by six paleontological constraints. We show that, according to 95% credibility intervals, the eukaryotic kingdoms diversified 950-1,259 million years ago (Mya), animals diverged from choanoflagellates 761-957 Mya, and the debated age of the split between protostomes and deuterostomes occurred 642-761 Mya. The divergence times appeared to be robust with respect to prior assumptions and paleontological calibrations. Interestingly, these relaxed clock time estimates are much more recent than those obtained under the assumption of a global molecular clock, yet bilaterian diversification appears to be approximate to100 million years more ancient than the Cambrian boundary.
Resumo:
Background and Aims: The aims of this investigation were to highlight the qualitative and quantitative diversity apparent between nine diploid Fragaria species and produce interspecific populations segregating for a large number of morphological characters suitable for quantitative trait loci analysis. Methods: A qualitative comparison of eight described diploid Fragaria species was performed and measurements were taken of 23 morphological traits from 19 accessions including eight described species and one previously undescribed species. A principal components analysis was performed on 14 mathematically unrelated traits from these accessions, which partitioned the species accessions into distinct morphological groups. Interspecific crosses were performed with accessions of species that displayed significant quantitative divergence and, from these, populations that should segregate for a range of quantitative traits were raised. Key Results: Significant differences between species were observed for all 23 morphological traits quantified and three distinct groups of species accessions were observed after the principal components analysis. Interspecific crosses were performed between these groups, and F2 and backcross populations were raised that should segregate for a range of morphological characters. In addition, the study highlighted a number of distinctive morphological characters in many of the species studied. Conclusions: Diploid Fragaria species are morphologically diverse, yet remain highly interfertile, making the group an ideal model for the study of the genetic basis of phenotypic differences between species through map-based investigation using quantitative trait loci. The segregating interspecific populations raised will be ideal for such investigations and could also provide insights into the nature and extent of genome evolution within this group.
A genetic linkage map of microsatellite, gene-specific and morphological markers in diploid Fragaria
Resumo:
Diploid Fragaria provide a potential model for genomic studies in the Rosaceae. To develop a genetic linkage map of diploid Fragaria, we scored 78 markers (68 microsatellites, one sequence-characterised amplified region, six gene-specific markers and three morphological traits) in an interspecific F2 population of 94 plants generated from a cross of F.vesca f. semperflorens × F. nubicola. Co-segregation analysis arranged 76 markers into seven discrete linkage groups covering 448 cM, with linkage group sizes ranging from 100.3 cM to 22.9 cM. Marker coverage was generally good; however some clustering of markers was observed on six of the seven linkage groups. Segregation distortion was observed at a high proportion of loci (54%), which could reflect the interspecific nature of the progeny and, in some cases, the self-incompatibility of F. nubicola. Such distortion may also account for some of the marker clustering observed in the map. One of the morphological markers, pale-green leaf (pg) has not previously been mapped in Fragaria and was located to the mid-point of linkage group VI. The transferable nature of the markers used in this study means that the map will be ideal for use as a framework for additional marker incorporation aimed at enhancing and resolving map coverage of the diploid Fragaria genome. The map also provides a sound basis for linkage map transfer to the cultivated octoploid strawberry.