983 resultados para Molecular cloning
Resumo:
This paper describes the cloning and characterization of a new member of the vascular endothelial growth factor (VEGF) gene family, which we have designated VRF for VEGF-related-factor. Sequencing of cDNAs from a human fetal brain library and RT-PCR products from normal and tumor tissue cDNA pools indicate two alternatively spliced messages with open reading frames of 621 and 564 bp, respectively. The predicted proteins differ at their carboxyl ends resulting from a shift in the open reading frame. Both isoforms show strong homology to VEGF at their amino termini, but only the shorter isoform maintains homology to VEGF at its carboxyl terminus and conserves all 16 cysteine residues of VEGF165. Similarity comparisons of this isoform revealed overall protein identity of 48% and conservative substitution of 69% with VEGF189. VRF is predicted to contain a signal peptide, suggesting that it may be a secreted factor. The VRF gene maps to the D11S750 locus at chromosome band 11q13, and the protein coding region, spanning approximately 5 kb, is comprised of 8 exons that range in size from 36 to 431 bp. Exons 6 and 7 are contiguous and the two isoforms of VRF arise through alternate splicing of exon 6. VRF appears to be ubiquitously expressed as two transcripts of 2.0 and 5.5 kb; the level of expression is similar among normal and malignant tissues.
Resumo:
Ghrelin is a multifunctional hormone, with roles in stimulating appetite and regulating energy balance, insulin secretion and glucose homeostasis. The ghrelin gene locus (GHRL) is highly complex and gives rise to a range of novel transcripts derived from alternative first exons and internally spliced exons. The wild-type transcript encodes a 117 amino acid preprohormone that is processed to yield the 28 amino acid peptide ghrelin. Here, we identified insulin-responsive transcription corresponding to cryptic exons in intron 2 of the human ghrelin gene. A transcript, termed in2c-ghrelin (intron 2-cryptic), was cloned from the testis and the LNCaP prostate cancer cell line. This transcript may encode an 83 AA preproghrelin isoform that codes for the ghrelin, but not obestatin. It is expressed in a limited number of normal tissues and in tumours of the prostate, testis, breast and ovary. Finally, we confirmed that in2c-ghrelin transcript expression, as well as the recently described in1-ghrelin transcript, is significantly upregulated by insulin in cultured prostate cancer cells. Metabolic syndrome and hyperinsulinaemia has been associated with prostate cancer risk and progression. This may be particularly significant after androgen deprivation therapy for prostate cancer, which induces hyperinsulinaemia, and this could contribute to castrate resistant prostate cancer growth. We have previously demonstrated that ghrelin stimulates prostate cancer cell line proliferation in vitro. This study is the first description of insulin regulation of a ghrelin transcript in cancer, and should provide further impetus for studies into the expression, regulation and function of ghrelin gene products.
Resumo:
A library containing approximately 40,000 small RNA sequences was constructed for Brassica napus. Analysis of 3025 sequences obtained from this library resulted in the identification of 11 conserved miRNA families, which were validated by secondary structure prediction using surrounding sequences in the Brassica genome. Two 21 nt small RNA sequences reside within the arm of a pre-miRNA like stem-loop structure, making them likely candidates for novel non-conserved miRNAs in B. napus. Most of the conserved miRNAs were expressed at similar levels in a F1 hybrid B. napus line and its four double haploid progeny that showed marked variations in phenotypes, but many were differentially expressed between B. napus and Arabidopsis. The miR169 family was expressed at high levels in young leaves and stems, but was undetectable in roots and mature leaves, suggesting that miR169 expression is developmentally regulated in B. napus. © 2007 Federation of European Biochemical Societies.
Resumo:
L-Amino acid oxidases (LAAOs) are useful catalysts for the deracemisation of racemic amino acid sub-strates when combined with abiotic reductants. The gene nadB encoding the L-aspartate amino acid oxidase from Pseudomonas putida (PpLASPO) has been cloned and expressed in E. coli. The purified PpLASPO enzyme displayed a K M for l-aspartic acid of 2.26 mM and a k cat = 10.6 s −1 , with lower activity also displayed towards L-asparagine, for which pronounced substrate inhibition was also observed. The pH optimum of the enzyme was recorded at pH 7.4. The enzyme was stable for 60 min at up to 40 • C, but rapid losses in activity were observed at 50 • C. A mutational analysis of the enzyme, based on its sequence homology with the LASPO from E. coli of known structure, appeared to confirm roles in substrate binding or catalysis for residues His244, His351, Arg386 and Arg290 and also for Thr259 and Gln242. The high activity of the enzyme, and its promiscuous acceptance of both L-asparagine and L-glutamate as substrates, if with low activity, suggests that PpLASPO may provide a good model enzyme for evolution studies towards AAOs of altered or improved properties in the future.
Resumo:
Background The ghrelin axis is involved in the regulation of metabolism, energy balance, and the immune, cardiovascular and reproductive systems. The manipulation of this axis has potential for improving economically valuable traits in production animals, and polymorphisms in the ghrelin (GHRL) and ghrelin receptor (GHSR) genes have been associated with growth and carcass traits. Here we investigate the structure and expression of the ghrelin gene (GHRL) in sheep, Ovis aries. Results We identify two ghrelin mRNA isoforms, which we have designated Δex2 preproghrelin and Δex2,3 preproghrelin. Expression of Δex2,3 preproghrelin is likely to be restricted to ruminants, and would encode truncated ghrelin and a novel C-terminal peptide. Both Δex2 preproghrelin and canonical preproghrelin mRNA isoforms were expressed in a range of tissues. Expression of the Δex2,3 preproghrelin isoform, however, was restricted to white blood cells (WBC; where the wild-type preproghrelin isoform is not co-expressed), and gastrointestinal tissues. Expression of Δex2 preproghrelin and Δex2,3 preproghrelin mRNA was elevated in white blood cells in response to parasitic worm (helminth) infection in genetically susceptible sheep, but not in resistant sheep. Conclusions The restricted expression of the novel preproghrelin variants and their distinct WBC expression pattern during parasite infection may indicate a novel link between the ghrelin axis and metabolic and immune function in ruminants.
Resumo:
Using DNA markers in plant breeding with marker-assisted selection (MAS) could greatly improve the precision and efficiency of selection, leading to the accelerated development of new crop varieties. The numerous examples of MAS in rice have prompted many breeding institutes to establish molecular breeding labs. The last decade has produced an enormous amount of genomics research in rice, including the identification of thousands of QTLs for agronomically important traits, the generation of large amounts of gene expression data, and cloning and characterization of new genes, including the detection of single nucleotide polymorphisms. The pinnacle of genomics research has been the completion and annotation of genome sequences for indica and japonica rice. This information-coupled with the development of new genotyping methodologies and platforms, and the development of bioinformatics databases and software tools-provides even more exciting opportunities for rice molecular breeding in the 21st century. However, the great challenge for molecular breeders is to apply genomics data in actual breeding programs. Here, we review the current status of MAS in rice, current genomics projects and promising new genotyping methodologies, and evaluate the probable impact of genomics research. We also identify critical research areas to "bridge the application gap" between QTL identification and applied breeding that need to be addressed to realize the full potential of MAS, and propose ideas and guidelines for establishing rice molecular breeding labs in the postgenome sequence era to integrate molecular breeding within the context of overall rice breeding and research programs.
Resumo:
We report cloning of the DNA encoding winged bean basic agglutinin (WBA I). Using oligonucleotide primers corresponding to N- and C-termini of the mature lectin, the complete coding sequence for WBA I could be amplified from genomic DNA. DNA sequence determination by the chain termination method revealed the absence of any intervening sequences in the gene. The DNA deduced amino acid sequence of WBA I displayed some differences with its primary structure established previously by chemical means. Comparison of the sequence of WBA I with that of other legume lectins highlighted several interesting features, including the existence of the largest specificity determining loop which might account for its oligosaccharide-binding specificity and the presence of an additional N-glycosylation site. These data also throw some light on the relationship between the primary structure of the protein and its probable mode of dimerization.
Resumo:
BTK-2, a 32 residue scorpion toxin initially identified in the venom of red Indian scorpion Mesobuthus tamulus was cloned, overexpressed and purified using Cytochrome 155 fusion protein system developed in our laboratory. The synthetic gene coding for the peptide was designed taking into account optimal codon usage by Escherichia coli. High expression levels of the fusion protein enabled facile purification of this peptide. The presence of disulfide bonded isomers, occurring as distinctly populated states even in the fusion protein, were separated by gel filtration chromatography. The target peptide was liberated from the host protein by Tev protease cleavage and subsequent purification was achieved using RP-HPLC methods. Reverse phase HPLC clearly showed the presence of at least two isomeric forms of the peptide that were significantly populated. The oxidative folding of BTK-2 was achieved under ambient conditions during the course of purification. Structural characterization of the two forms, by solution homonuclear and heteronuclear NMR methods, has shown that these two forms exhibit significantly different structural properties, and represent the natively folded and a "misfolded" form of the peptide. The formation of properly folded BTK-2 as a major fraction without the use of in vitro oxidative refolding methods clearly indicate the versatility of the Cytochrome b(5) fusion protein system for the efficient production of peptides for high resolution NMR studies.
Resumo:
Using the polymerase chain reaction, the coding sequence for peanut agglutinin (PNA) was cloned and expressed in Escherichia coli. Amplified PNA is identical to previously reported cDNA, suggesting the absence of any introns in PNA gene. Recombinant (re-) PNA forms inclusion bodies in E. coli. Production of PNA was confirmed by probing Western blots with polyclonal anti-PNA immunoglobulin G. Inclusion bodies were solubilized with 6 M guanidine-HCl and renatured by rapid dilution in the presence of metal ions. The renatured lectin was then purified by affinity chromatography. The re-lectin shows carbohydrate-binding properties similar to the natural PNA. This expression system provides a model for future mutagenesis studies of the carbohydrate-binding site and thus facilitates ongoing efforts to explore the molecular basis for the specificity of lectin-carbohydrate interaction.
Resumo:
In Salmonella typhimurium, propionate is oxidized to pyruvate via the 2-methylcitric acid cycle. The last step of this cycle, the cleavage of 2-methylisocitrate to succinate and pyruvate, is catalysed by 2-methylisocitrate lyase (EC 4.1.3.30). Methylisocitrate lyase (molecular weight 32 kDa) with a C-terminal polyhistidine affinity tag has been cloned and overexpressed in Escherichia coli and purified and crystallized under different conditions using the hanging-drop vapour-diffusion technique. Crystals belong to the orthogonal space group P2(1)2(1)2(1), with unit-cell parameters a = 63.600, b = 100.670, c = 204.745 Angstrom. A complete data set to 2.5 Angstrom resolution has been collected using an image-plate detector system mounted on a rotating-anode X-ray generator.
Resumo:
A secreted lectin, Rv1419, from Mycobacterium tuberculosis has been cloned, expressed, purified and crystallized and the crystals have been characterized. This represents the first X-ray investigation of a lectin or lectin-like molecule from the pathogen. The cubic crystals contain one molecule in the asymmetric unit. Sequence comparisons indicate that the lectin has a beta-trefoil fold and belongs to a well characterized family of carbohydrate-binding modules. Structural analysis of the crystals is in progress.
Resumo:
A genomic library was constructed from a HindIII digest of Azospirillum lipoferum chromosomal DNA in the HindIII site of pUC19. From the library, a clone, pALH64, which showed strong hybridization with 3' end labeled A. lipoferum total tRNAs and which contains a 2.9 kb insert was isolated and restriction map of the insert established. The nucleotide sequence of a 490 bp HindIII-HincII subfragment containing a cluster of genes coding for 5S rRNA, tRNA(Val)(UAC), tRNA(Thr)(UGA) and tRNA(Lys)(UUU) has been determined. The gene organization is 5S rRNA (115 bp), spacer (10 bp), tRNA(Val) (76 bp), spacer (3 bp), tRNA(Thr) (76 bp), spacer (7 bp) and tRNA(Lys) (76 bp). Hybridization experiments using A. lipoferum total tRNAs and 5S rRNA with the cloned DNA probes revealed that all three tRNA genes and the 5S rRNA gene are expressed in vivo in the bacterial cells.
Resumo:
The structural proteins of mycobacteriophage I3 have been analysed by sodium dodecyl sulfate-polyacrylamide-gel electrophoresis (SDS-PAGE), radioiodination and immunoblotting. Based on their abundance the 34- and 70-kDa bands appeared to represent the major structural proteins. Successful cloning and expression of the 70-kDa protein-encoding gene of phage I3 in Escherichia coli and its complete nucleotide sequence determination have been accomplished, A second (partial) open reading frame following the stop codon for the 70-kDa protein was also identified within the cloned fragment. The deduced amino-acid sequence of the 70-kDa protein and the codon usage patterns indicated the preponderance of codons, as predicted from the high G+C content of the genomic DNA of phage I3.
Resumo:
The mannose-binding lectin domain of MSMEG_3662 from Mycobacterium smegmatis has been cloned, expressed, purified and crystallized and the crystals have been characterized using X-ray diffraction. The Matthews coefficient suggests the possibility of two lectin domains in the triclinic cell. The amino-acid sequence of the domain indicates structural similarity to well characterized beta-prism II fold lectins.
Resumo:
Thiolases are important in fatty-acid degradation and biosynthetic pathways. Analysis of the genomic sequence of Mycobacterium smegmatis suggests the presence of several putative thiolase genes. One of these genes appears to code for an SCP-x protein. Human SCP-x consists of an N-terminal domain (referred to as SCP2 thiolase) and a C-terminal domain (referred as sterol carrier protein 2). Here, the cloning, expression, purification and crystallization of this putative SCP-x protein from M. smegmatis are reported. The crystals diffracted X-rays to 2.5 angstrom resolution and belonged to the triclinic space group P1. Calculation of rotation functions using X-ray diffraction data suggests that the protein is likely to possess a hexameric oligomerization with 32 symmetry which has not been observed in the other six known classes of this enzyme.