959 resultados para Modeling information


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review and compare four broad categories of spatially-explicit modelling approaches currently used to understand and project changes in the distribution and productivity of living marine resources including: 1) statistical species distribution models, 2) physiology-based, biophysical models of single life stages or the whole life cycle of species, 3) food web models, and 4) end-to-end models. Single pressures are rare and, in the future, models must be able to examine multiple factors affecting living marine resources such as interactions between: i) climate-driven changes in temperature regimes and acidification, ii) reductions in water quality due to eutrophication, iii) the introduction of alien invasive species, and/or iv) (over-)exploitation by fisheries. Statistical (correlative) approaches can be used to detect historical patterns which may not be relevant in the future. Advancing predictive capacity of changes in distribution and productivity of living marine resources requires explicit modelling of biological and physical mechanisms. New formulations are needed which (depending on the question) will need to strive for more realism in ecophysiology and behaviour of individuals, life history strategies of species, as well as trophodynamic interactions occurring at different spatial scales. Coupling existing models (e.g. physical, biological, economic) is one avenue that has proven successful. However, fundamental advancements are needed to address key issues such as the adaptive capacity of species/groups and ecosystems. The continued development of end-to-end models (e.g., physics to fish to human sectors) will be critical if we hope to assess how multiple pressures may interact to cause changes in living marine resources including the ecological and economic costs and trade-offs of different spatial management strategies. Given the strengths and weaknesses of the various types of models reviewed here, confidence in projections of changes in the distribution and productivity of living marine resources will be increased by assessing model structural uncertainty through biological ensemble modelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While most students seem to solve information problems effortlessly, research shows that the cognitive skills for effective information problem solving are often underdeveloped. Students manage to find information and formulate solutions, but the quality of their process and product is questionable. It is therefore important to develop instruction for fostering these skills. In this research, a 2-h online intervention was presented to first-year university students with the goal to improve their information problem solving skills while investigating effects of different types of built-in task support. A training design containing completion tasks was compared to a design using emphasis manipulation. A third variant of the training combined both approaches. In two experiments, these conditions were compared to a control condition receiving conventional tasks without built-in task support. Results of both experiments show that students' information problem solving skills are underdeveloped, which underlines the necessity for formal training. While the intervention improved students’ skills, no differences were found between conditions. The authors hypothesize that the effective presentation of supportive information in the form of a modeling example at the start of the training caused a strong learning effect, which masked effects of task support. Limitations and directions for future research are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current study builds upon a previous study, which examined the degree to which the lexical properties of students’ essays could predict their vocabulary scores. We expand on this previous research by incorporating new natural language processing indices related to both the surface- and discourse-levels of students’ essays. Additionally, we investigate the degree to which these NLP indices can be used to account for variance in students’ reading comprehension skills. We calculated linguistic essay features using our framework, ReaderBench, which is an automated text analysis tools that calculates indices related to linguistic and rhetorical features of text. University students (n = 108) produced timed (25 minutes), argumentative essays, which were then analyzed by ReaderBench. Additionally, they completed the Gates-MacGinitie Vocabulary and Reading comprehension tests. The results of this study indicated that two indices were able to account for 32.4% of the variance in vocabulary scores and 31.6% of the variance in reading comprehension scores. Follow-up analyses revealed that these models further improved when only considering essays that contained multiple paragraph (R2 values = .61 and .49, respectively). Overall, the results of the current study suggest that natural language processing techniques can help to inform models of individual differences among student writers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract : Images acquired from unmanned aerial vehicles (UAVs) can provide data with unprecedented spatial and temporal resolution for three-dimensional (3D) modeling. Solutions developed for this purpose are mainly operating based on photogrammetry concepts, namely UAV-Photogrammetry Systems (UAV-PS). Such systems are used in applications where both geospatial and visual information of the environment is required. These applications include, but are not limited to, natural resource management such as precision agriculture, military and police-related services such as traffic-law enforcement, precision engineering such as infrastructure inspection, and health services such as epidemic emergency management. UAV-photogrammetry systems can be differentiated based on their spatial characteristics in terms of accuracy and resolution. That is some applications, such as precision engineering, require high-resolution and high-accuracy information of the environment (e.g. 3D modeling with less than one centimeter accuracy and resolution). In other applications, lower levels of accuracy might be sufficient, (e.g. wildlife management needing few decimeters of resolution). However, even in those applications, the specific characteristics of UAV-PSs should be well considered in the steps of both system development and application in order to yield satisfying results. In this regard, this thesis presents a comprehensive review of the applications of unmanned aerial imagery, where the objective was to determine the challenges that remote-sensing applications of UAV systems currently face. This review also allowed recognizing the specific characteristics and requirements of UAV-PSs, which are mostly ignored or not thoroughly assessed in recent studies. Accordingly, the focus of the first part of this thesis is on exploring the methodological and experimental aspects of implementing a UAV-PS. The developed system was extensively evaluated for precise modeling of an open-pit gravel mine and performing volumetric-change measurements. This application was selected for two main reasons. Firstly, this case study provided a challenging environment for 3D modeling, in terms of scale changes, terrain relief variations as well as structure and texture diversities. Secondly, open-pit-mine monitoring demands high levels of accuracy, which justifies our efforts to improve the developed UAV-PS to its maximum capacities. The hardware of the system consisted of an electric-powered helicopter, a high-resolution digital camera, and an inertial navigation system. The software of the system included the in-house programs specifically designed for camera calibration, platform calibration, system integration, onboard data acquisition, flight planning and ground control point (GCP) detection. The detailed features of the system are discussed in the thesis, and solutions are proposed in order to enhance the system and its photogrammetric outputs. The accuracy of the results was evaluated under various mapping conditions, including direct georeferencing and indirect georeferencing with different numbers, distributions and types of ground control points. Additionally, the effects of imaging configuration and network stability on modeling accuracy were assessed. The second part of this thesis concentrates on improving the techniques of sparse and dense reconstruction. The proposed solutions are alternatives to traditional aerial photogrammetry techniques, properly adapted to specific characteristics of unmanned, low-altitude imagery. Firstly, a method was developed for robust sparse matching and epipolar-geometry estimation. The main achievement of this method was its capacity to handle a very high percentage of outliers (errors among corresponding points) with remarkable computational efficiency (compared to the state-of-the-art techniques). Secondly, a block bundle adjustment (BBA) strategy was proposed based on the integration of intrinsic camera calibration parameters as pseudo-observations to Gauss-Helmert model. The principal advantage of this strategy was controlling the adverse effect of unstable imaging networks and noisy image observations on the accuracy of self-calibration. The sparse implementation of this strategy was also performed, which allowed its application to data sets containing a lot of tie points. Finally, the concepts of intrinsic curves were revisited for dense stereo matching. The proposed technique could achieve a high level of accuracy and efficiency by searching only through a small fraction of the whole disparity search space as well as internally handling occlusions and matching ambiguities. These photogrammetric solutions were extensively tested using synthetic data, close-range images and the images acquired from the gravel-pit mine. Achieving absolute 3D mapping accuracy of 11±7 mm illustrated the success of this system for high-precision modeling of the environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The blast furnace is the main ironmaking production unit in the world which converts iron ore with coke and hot blast into liquid iron, hot metal, which is used for steelmaking. The furnace acts as a counter-current reactor charged with layers of raw material of very different gas permeability. The arrangement of these layers, or burden distribution, is the most important factor influencing the gas flow conditions inside the furnace, which dictate the efficiency of the heat transfer and reduction processes. For proper control the furnace operators should know the overall conditions in the furnace and be able to predict how control actions affect the state of the furnace. However, due to high temperatures and pressure, hostile atmosphere and mechanical wear it is very difficult to measure internal variables. Instead, the operators have to rely extensively on measurements obtained at the boundaries of the furnace and make their decisions on the basis of heuristic rules and results from mathematical models. It is particularly difficult to understand the distribution of the burden materials because of the complex behavior of the particulate materials during charging. The aim of this doctoral thesis is to clarify some aspects of burden distribution and to develop tools that can aid the decision-making process in the control of the burden and gas distribution in the blast furnace. A relatively simple mathematical model was created for simulation of the distribution of the burden material with a bell-less top charging system. The model developed is fast and it can therefore be used by the operators to gain understanding of the formation of layers for different charging programs. The results were verified by findings from charging experiments using a small-scale charging rig at the laboratory. A basic gas flow model was developed which utilized the results of the burden distribution model to estimate the gas permeability of the upper part of the blast furnace. This combined formulation for gas and burden distribution made it possible to implement a search for the best combination of charging parameters to achieve a target gas temperature distribution. As this mathematical task is discontinuous and non-differentiable, a genetic algorithm was applied to solve the optimization problem. It was demonstrated that the method was able to evolve optimal charging programs that fulfilled the target conditions. Even though the burden distribution model provides information about the layer structure, it neglects some effects which influence the results, such as mixed layer formation and coke collapse. A more accurate numerical method for studying particle mechanics, the Discrete Element Method (DEM), was used to study some aspects of the charging process more closely. Model charging programs were simulated using DEM and compared with the results from small-scale experiments. The mixed layer was defined and the voidage of mixed layers was estimated. The mixed layer was found to have about 12% less voidage than layers of the individual burden components. Finally, a model for predicting the extent of coke collapse when heavier pellets are charged over a layer of lighter coke particles was formulated based on slope stability theory, and was used to update the coke layer distribution after charging in the mathematical model. In designing this revision, results from DEM simulations and charging experiments for some charging programs were used. The findings from the coke collapse analysis can be used to design charging programs with more stable coke layers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Authentication plays an important role in how we interact with computers, mobile devices, the web, etc. The idea of authentication is to uniquely identify a user before granting access to system privileges. For example, in recent years more corporate information and applications have been accessible via the Internet and Intranet. Many employees are working from remote locations and need access to secure corporate files. During this time, it is possible for malicious or unauthorized users to gain access to the system. For this reason, it is logical to have some mechanism in place to detect whether the logged-in user is the same user in control of the user's session. Therefore, highly secure authentication methods must be used. We posit that each of us is unique in our use of computer systems. It is this uniqueness that is leveraged to "continuously authenticate users" while they use web software. To monitor user behavior, n-gram models are used to capture user interactions with web-based software. This statistical language model essentially captures sequences and sub-sequences of user actions, their orderings, and temporal relationships that make them unique by providing a model of how each user typically behaves. Users are then continuously monitored during software operations. Large deviations from "normal behavior" can possibly indicate malicious or unintended behavior. This approach is implemented in a system called Intruder Detector (ID) that models user actions as embodied in web logs generated in response to a user's actions. User identification through web logs is cost-effective and non-intrusive. We perform experiments on a large fielded system with web logs of approximately 4000 users. For these experiments, we use two classification techniques; binary and multi-class classification. We evaluate model-specific differences of user behavior based on coarse-grain (i.e., role) and fine-grain (i.e., individual) analysis. A specific set of metrics are used to provide valuable insight into how each model performs. Intruder Detector achieves accurate results when identifying legitimate users and user types. This tool is also able to detect outliers in role-based user behavior with optimal performance. In addition to web applications, this continuous monitoring technique can be used with other user-based systems such as mobile devices and the analysis of network traffic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The analysis of steel and composite frames has traditionally been carried out by idealizing beam-to-column connections as either rigid or pinned. Although some advanced analysis methods have been proposed to account for semi-rigid connections, the performance of these methods strongly depends on the proper modeling of connection behavior. The primary challenge of modeling beam-to-column connections is their inelastic response and continuously varying stiffness, strength, and ductility. In this dissertation, two distinct approaches—mathematical models and informational models—are proposed to account for the complex hysteretic behavior of beam-to-column connections. The performance of the two approaches is examined and is then followed by a discussion of their merits and deficiencies. To capitalize on the merits of both mathematical and informational representations, a new approach, a hybrid modeling framework, is developed and demonstrated through modeling beam-to-column connections. Component-based modeling is a compromise spanning two extremes in the field of mathematical modeling: simplified global models and finite element models. In the component-based modeling of angle connections, the five critical components of excessive deformation are identified. Constitutive relationships of angles, column panel zones, and contact between angles and column flanges, are derived by using only material and geometric properties and theoretical mechanics considerations. Those of slip and bolt hole ovalization are simplified by empirically-suggested mathematical representation and expert opinions. A mathematical model is then assembled as a macro-element by combining rigid bars and springs that represent the constitutive relationship of components. Lastly, the moment-rotation curves of the mathematical models are compared with those of experimental tests. In the case of a top-and-seat angle connection with double web angles, a pinched hysteretic response is predicted quite well by complete mechanical models, which take advantage of only material and geometric properties. On the other hand, to exhibit the highly pinched behavior of a top-and-seat angle connection without web angles, a mathematical model requires components of slip and bolt hole ovalization, which are more amenable to informational modeling. An alternative method is informational modeling, which constitutes a fundamental shift from mathematical equations to data that contain the required information about underlying mechanics. The information is extracted from observed data and stored in neural networks. Two different training data sets, analytically-generated and experimental data, are tested to examine the performance of informational models. Both informational models show acceptable agreement with the moment-rotation curves of the experiments. Adding a degradation parameter improves the informational models when modeling highly pinched hysteretic behavior. However, informational models cannot represent the contribution of individual components and therefore do not provide an insight into the underlying mechanics of components. In this study, a new hybrid modeling framework is proposed. In the hybrid framework, a conventional mathematical model is complemented by the informational methods. The basic premise of the proposed hybrid methodology is that not all features of system response are amenable to mathematical modeling, hence considering informational alternatives. This may be because (i) the underlying theory is not available or not sufficiently developed, or (ii) the existing theory is too complex and therefore not suitable for modeling within building frame analysis. The role of informational methods is to model aspects that the mathematical model leaves out. Autoprogressive algorithm and self-learning simulation extract the missing aspects from a system response. In a hybrid framework, experimental data is an integral part of modeling, rather than being used strictly for validation processes. The potential of the hybrid methodology is illustrated through modeling complex hysteretic behavior of beam-to-column connections. Mechanics-based components of deformation such as angles, flange-plates, and column panel zone, are idealized to a mathematical model by using a complete mechanical approach. Although the mathematical model represents envelope curves in terms of initial stiffness and yielding strength, it is not capable of capturing the pinching effects. Pinching is caused mainly by separation between angles and column flanges as well as slip between angles/flange-plates and beam flanges. These components of deformation are suitable for informational modeling. Finally, the moment-rotation curves of the hybrid models are validated with those of the experimental tests. The comparison shows that the hybrid models are capable of representing the highly pinched hysteretic behavior of beam-to-column connections. In addition, the developed hybrid model is successfully used to predict the behavior of a newly-designed connection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of artistic prints in the sixteenth- and seventeenth-century Netherlands was an inherently social process. Turning out prints at any reasonable scale depended on the fluid coordination between designers, platecutters, and publishers; roles that, by the sixteenth century, were considered distinguished enough to merit distinct credits engraved on the plates themselves: invenit, fecit/sculpsit, and excudit. While any one designer, plate cutter, and publisher could potentially exercise a great deal of influence over the production of a single print, their individual decisions (Whom to select as an engraver? What subjects to create for a print design? What market to sell to?) would have been variously constrained or encouraged by their position in this larger network (Who do they already know? And who, in turn, do their contacts know?) This dissertation addresses the impact of these constraints and affordances through the novel application of computational social network analysis to major databases of surviving prints from this period. This approach is used to evaluate several questions about trends in early modern print production practices that have not been satisfactorily addressed by traditional literature based on case studies alone: Did the social capital demanded by print production result in centralized, or distributed production of prints? When, and to what extent, did printmakers and publishers in the Low countries favor international versus domestic collaborators? And were printmakers under the same pressure as painters to specialize in particular artistic genres? This dissertation ultimately suggests how simple professional incentives endemic to the practice of printmaking may, at large scales, have resulted in quite complex patterns of collaboration and production. The framework of network analysis surfaces the role of certain printmakers who tend to be neglected in aesthetically-focused histories of art. This approach also highlights important issues concerning art historians’ balancing of individual influence versus the impact of longue durée trends. Finally, this dissertation also raises questions about the current limitations and future possibilities of combining computational methods with cultural heritage datasets in the pursuit of historical research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two-phase flow heat exchangers have been shown to have very high efficiencies, but the lack of a dependable model and data precludes them from use in many cases. Herein a new method for the measurement of local convective heat transfer coefficients from the outside of a heat transferring wall has been developed, which results in accurate local measurements of heat flux during two-phase flow. This novel technique uses a chevron-pattern corrugated plate heat exchanger consisting of a specially machined Calcium Fluoride plate and the refrigerant HFE7100, with heat flux values up to 1 W cm-2 and flow rates up to 300 kg m-2s-1. As Calcium Fluoride is largely transparent to infra-red radiation, the measurement of the surface temperature of PHE that is in direct contact with the liquid is accomplished through use of a mid-range (3.0-5.1 µm) infra-red camera. The objective of this study is to develop, validate, and use a unique infrared thermometry method to quantify the heat transfer characteristics of flow boiling within different Plate Heat Exchanger geometries. This new method allows high spatial and temporal resolution measurements. Furthermore quasi-local pressure measurements enable us to characterize the performance of each geometry. Validation of this technique will be demonstrated by comparison to accepted single and two-phase data. The results can be used to come up with new heat transfer correlations and optimization tools for heat exchanger designers. The scientific contribution of this thesis is, to give PHE developers further tools to allow them to identify the heat transfer and pressure drop performance of any corrugated plate pattern directly without the need to account for typical error sources due to inlet and outlet distribution systems. Furthermore, the designers will now gain information on the local heat transfer distribution within one plate heat exchanger cell which will help to choose the correct corrugation geometry for a given task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chiasma and crossover are two related biological processes of great importance in the understanding genetic variation. The study of these processes is straightforward in organisms where all products of meiosis are recovered and can be observed. This is not the case in mammals. Our understanding of these processes depends on our ability to model them. In this study I describe the biological processes that underline chiasma and crossover as well as the two main inference problems associated with these processes: i) in mammals we only recover one of the four products of meiosis and, ii) in general, we do not observe where the crossovers actually happen, but we find an interval containing type-2 censored information. NPML estimate was proposed and used in this work and used to compare chromosome length and chromosome expansion through the crosses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information supply is an important instrument through which interest groups can exert influence on political decisions. However, information supply to decision-makers varies extensively across interest groups. How can this be explained? Why do some interest groups provide more information than others? I argue that variation in information supply can largely be explained by organizational characteristics, more specifically the resources, the functional differentiation, the professionalization and the decentralization of interest groups. I test my theoretical expectations based on a large new dataset: Using multilevel modeling, I examine information supply to the European Commission across 56 policy issues and a wide range of interest groups by combining an analysis of consultation submissions with a survey conducted among interest groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal was to understand, document and module how information is currently flown internally in the largest dairy organization in Finland. The organization has undergone radical changes in the past years due to economic sanctions between European Union and Russia. Therefore, organization’s ultimate goal would be to continue its growth through managing its sales process more efficiently. The thesis consists of a literature review and an empirical part. The literature review consists of knowledge management and process modeling theories. First, the knowledge management discusses how data, information and knowledge are exchanged in the process. Knowledge management models and processes are describing how knowledge is created, exchanged and can be managed in an organization. Secondly, the process modeling is responsible for visualizing information flow through discussion of modeling approaches and presenting different methods and techniques. Finally, process’ documentation procedure was presented. In the end, a constructive research approach was used in order to identify process’ related problems and bottlenecks. Therefore, possible solutions were presented based on this approach. The empirical part of the study is based on 37 interviews, organization’s internal data sources and theoretical framework. The acquired data and information were used to document and to module the sales process in question with a flowchart diagram. Results are conducted through construction of the flowchart diagram and analysis of the documentation. In fact, answers to research questions are derived from empirical and theoretical parts. In the end, 14 problems and two bottlenecks were identified in the process. The most important problems are related to approach and/or standardization for information sharing, insufficient information technology tool utilization and lack of systematization of documentation. The bottlenecks are caused by the alarming amount of changes to files after their deadlines.