983 resultados para Mixed-integer linear programing
Resumo:
We propose a cost-effective hot event detection system over Sina Weibo platform, currently the dominant microblogging service provider in China. The problem of finding a proper subset of microbloggers under resource constraints is formulated as a mixed-integer problem for which heuristic algorithms are developed to compute approximate solution. Preliminary results show that by tracking about 500 out of 1.6 million candidate microbloggers and processing 15,000 microposts daily, 62% of the hot events can be detected five hours on average earlier than they are published by Weibo.
Resumo:
MSC 2010: 49K05, 26A33
Resumo:
Bus stops are key links in the journeys of transit patrons with disabilities. Inaccessible bus stops prevent people with disabilities from using fixed-route bus services, thus limiting their mobility. The Americans with Disabilities Act (ADA) of 1990 prescribes the minimum requirements for bus stop accessibility by riders with disabilities. Due to limited budgets, transit agencies can only select a limited number of bus stop locations for ADA improvements annually. These locations should preferably be selected such that they maximize the overall benefits to patrons with disabilities. In addition, transit agencies may also choose to implement the universal design paradigm, which involves higher design standards than current ADA requirements and can provide amenities that are useful for all riders, like shelters and lighting. Many factors can affect the decision to improve a bus stop, including rider-based aspects like the number of riders with disabilities, total ridership, customer complaints, accidents, deployment costs, as well as locational aspects like the location of employment centers, schools, shopping areas, and so on. These interlacing factors make it difficult to identify optimum improvement locations without the aid of an optimization model. This dissertation proposes two integer programming models to help identify a priority list of bus stops for accessibility improvements. The first is a binary integer programming model designed to identify bus stops that need improvements to meet the minimum ADA requirements. The second involves a multi-objective nonlinear mixed integer programming model that attempts to achieve an optimal compromise among the two accessibility design standards. Geographic Information System (GIS) techniques were used extensively to both prepare the model input and examine the model output. An analytic hierarchy process (AHP) was applied to combine all of the factors affecting the benefits to patrons with disabilities. An extensive sensitivity analysis was performed to assess the reasonableness of the model outputs in response to changes in model constraints. Based on a case study using data from Broward County Transit (BCT) in Florida, the models were found to produce a list of bus stops that upon close examination were determined to be highly logical. Compared to traditional approaches using staff experience, requests from elected officials, customer complaints, etc., these optimization models offer a more objective and efficient platform on which to make bus stop improvement suggestions.
Resumo:
This research focuses on developing a capacity planning methodology for the emerging concurrent engineer-to-order (ETO) operations. The primary focus is placed on the capacity planning at sales stage. This study examines the characteristics of capacity planning in a concurrent ETO operation environment, models the problem analytically, and proposes a practical capacity planning methodology for concurrent ETO operations in the industry. A computer program that mimics a concurrent ETO operation environment was written to validate the proposed methodology and test a set of rules that affect the performance of a concurrent ETO operation. ^ This study takes a systems engineering approach to the problem and employs systems engineering concepts and tools for the modeling and analysis of the problem, as well as for developing a practical solution to this problem. This study depicts a concurrent ETO environment in which capacity is planned. The capacity planning problem is modeled into a mixed integer program and then solved for smaller-sized applications to evaluate its validity and solution complexity. The objective is to select the best set of available jobs to maximize the profit, while having sufficient capacity to meet each due date expectation. ^ The nature of capacity planning for concurrent ETO operations is different from other operation modes. The search for an effective solution to this problem has been an emerging research field. This study characterizes the problem of capacity planning and proposes a solution approach to the problem. This mathematical model relates work requirements to capacity over the planning horizon. The methodology is proposed for solving industry-scale problems. Along with the capacity planning methodology, a set of heuristic rules was evaluated for improving concurrent ETO planning. ^
Resumo:
This study analyzed the Worker’s Healthy Eating Program in Rio Grande do Norte state (RN) to assess its possible impact on the nutritional status of the workers benefitted. To that end, we conducted a cross-sectional observational prospective study based on a multistage stratified random sample comparing 26 small and medium-sized companies from the Manufacturing Sector (textiles, food and beverages, and nonmetallic minerals) of RN, divided into two equal groups (WFP and Non WFP). Interviews were conducted at each company by trained interviewers from Tuesday to Saturday between September and December 2014. Data were collected on the company (characterization and information regarding the program’s desired results) and workers (personal and professional information, anthropometrics, health, lifestyle and food consumed the previous day). Population estimates were calculated for RN on the characteristics of workers and the study variables. The main variable was BMI. The secondary variables were waist circumference (WC), nutritional diagnosis, calorie intake, blood pressure, metabolic variables and lifestyle indicators. The statistical method used was hierarchical mixed effects linear regression for interval variables and hierarchical mixed effects logistic regression for binary variables. The variables measured in ordinal scales were analyzed by ordinal logistic regression adjusted for correlated variables, adopting robust standard errors. The results for interval variables are presented as point estimates and their 95% confidence intervals; and as odds-ratios and their 95% confidence intervals for binary variables. The Fisher’s exact and Student’s t-tests were used for simple comparisons between proportions and means, respectively. Differences were considered statistically significant at p<0.05. A total of 1069 workers were interviewed, of which 541 were from the WFP group and 528 from the Non WFP group. Subjects were predominantly males and average age was 34.5 years. Significant intergroup differences were observed for schooling level, income above 1 MW (minimum wage) and specific training for their position at the company. The results indicated a significant difference between the BMI of workers benefitted, which was on average 0.989 kg/m2 higher than the BMI of workers from the Non WFP group (p=0.002); and between the WC, with the waist circumference of WFP group workers an average of 1.528 cm larger (p<0.05). Higher prevalence of overweight and obesity (p<0.001) and cardiovascular risk (p=0.038) were recorded in the WFP group. Tests on the possible effect of the WFP on health (blood pressure and metabolic indicators) and lifestyle indicators (smoking, alcohol consumption and exercise) were not significant. With respect to worker’s diets, differences were significant for consumption of saturated fat (lunch and daily intake), salt (lunch, other meals and daily intake) and proteins (other meals and daily intake), with higher consumption of these nutrients in the WFP group. The study showed a possible positive impact of the WFP on nutritional status (BMI and WC) among the workers benefitted. No possible effects of the program were observed for the lifestyle indicators studied. Workers benefitted consumed less salt, saturated fat and protein. The relevance of the WFP is recognized for this portion of society and it is understood that, if the program can reach and impact those involved, the development of educational initiatives aimed at nutritional and food safety may also exert a positive influence.
Resumo:
Acknowledgement The first author would like to acknowledge the University of Aberdeen and the Henderson Economics Research Fund for funding his PhD studies in the period 2011-2014 which formed the basis for the research presented in this paper. The first author would also like to acknowledge the Macaulay Development Trust which funds his postdoctoral fellowship with The James Hutton Institute, Aberdeen, Scotland. The authors thank two anonymous referees for valuable comments and suggestions on earlier versions of this paper. All usual caveats apply
Resumo:
A scenario-based two-stage stochastic programming model for gas production network planning under uncertainty is usually a large-scale nonconvex mixed-integer nonlinear programme (MINLP), which can be efficiently solved to global optimality with nonconvex generalized Benders decomposition (NGBD). This paper is concerned with the parallelization of NGBD to exploit multiple available computing resources. Three parallelization strategies are proposed, namely, naive scenario parallelization, adaptive scenario parallelization, and adaptive scenario and bounding parallelization. Case study of two industrial natural gas production network planning problems shows that, while the NGBD without parallelization is already faster than a state-of-the-art global optimization solver by an order of magnitude, the parallelization can improve the efficiency by several times on computers with multicore processors. The adaptive scenario and bounding parallelization achieves the best overall performance among the three proposed parallelization strategies.
Resumo:
The study aims to provide information on efficiency opportunities on SCA's northbound cassettes. It has been made by examining the capacity utilization rate on the northbound cassettes on SCA's vessels for a period of two weeks. The cargo loaded in the ports of Rotterdam and Sheerness consists of external cargo of varying shape. The cargo is shipped northbound to Holmsund and Sundsvall. Measurements have been made on the cargo to the final destinations Sundsvall, Holmsund and Finland. The measurements have been used in a mathematical optimization model created to optimize the loading of the cassettes. The model is based on placing boxes in a grid where the boxes that are placed representing the cargo and the grids representing the cassettes. The aim of the model is to reduce the number of cassettes and thereby increase the capacity utilization rate. The study resulted in an increase in capacity utilization rate for both area and volume to all destinations. The overall improvement for all cassettes examined resulted in an increase in the area capacity utilization rate by 9.02 percentage points and 5.72 percentage points for the volume capacity utilization rate. It also resulted in a decrease of 22 cassettes in total on the four voyages that were examined which indicate that there are opportunities to improve the capacity utilization rate. The study also shows that the model can be used as a basis for similar problems.
Resumo:
Chaque année le feu brûle quelques dizaines de milliers d’hectares de forêts québécoises. Le coût annuel de prévention et de lutte contre les feux de forêts au Québec est de l’ordre de plusieurs dizaines de millions de dollars. Le présent travail contribue à la réduction de ces coûts à travers l’automatisation du processus de planification des opérations de suppression des feux de forêts majeurs. Pour ce faire, un modèle mathématique linéaire en nombres entiers a été élaboré, résolu et testé; introduisant un nouveau cas particulier à la littérature des Problèmes de Tournées de Véhicules (VRP). Ce modèle mathématique concerne le déploiement aérien des ressources disponibles pour l’extinction des incendies. Le modèle élaboré a été testé avec CPLEX sur des cas tirés de données réelles. Il a permis de réduire le temps de planification des opérations d’extinction des feux de forêts majeurs de 75% dans les situations courantes.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Short sea shipping has several advantages over other means of transportation, recognized by EU members. The maritime transportation could be dealt like a combination of two well-known problems: the container stowage problem and routing planning problem. The integration of these two well-known problems results in a new problem CSSRP (Container stowage and ship routing problem) that is also an hard combinatorial optimization problem. The aim of this work is to solve the CSSRP using a mixed integer programming model. It is proved that regardless the complexity of this problem, optimal solutions could be achieved in a reduced computational time. For testing the mathematical model some problems based on real data were generated and a sensibility analysis was performed.
Resumo:
Worldwide air traffic tends to increase and for many airports it is no longer an op-tion to expand terminals and runways, so airports are trying to maximize their op-erational efficiency. Many airports already operate near their maximal capacity. Peak hours imply operational bottlenecks and cause chained delays across flights impacting passengers, airlines and airports. Therefore there is a need for the opti-mization of the ground movements at the airports. The ground movement prob-lem consists of routing the departing planes from the gate to the runway for take-off, and the arriving planes from the runway to the gate, and to schedule their movements. The main goal is to minimize the time spent by the planes during their ground movements while respecting all the rules established by the Ad-vanced Surface Movement, Guidance and Control Systems of the International Civil Aviation. Each aircraft event (arrival or departing authorization) generates a new environment and therefore a new instance of the Ground Movement Prob-lem. The optimization approach proposed is based on an Iterated Local Search and provides a fast heuristic solution for each real-time event generated instance granting all safety regulations. Preliminary computational results are reported for real data comparing the heuristic solutions with the solutions obtained using a mixed-integer programming approach.
Resumo:
The BBMCSFilter method was developed to solve mixed integer nonlinear programming problems. This kind of problems have integer and continuous variables and they appear very frequently in process engineering problems. The objective of this work is to analyze the performance of the method when the coordinate searches are interrupted in the context of the multistart strategy. From the numerical experiments, we observed a reduction on the number of function evaluations and on the CPU time.
Resumo:
The Train Timetabling Problem (TTP) has been widely studied for freight and passenger rail systems. A lesser effort has been devoted to the study of high-speed rail systems. A modeling issue that has to be addressed is to model departure time choice of passengers on railway services. Passengers who use these systems attempt to travel at predetermined hours due to their daily life necessities (e.g., commuter trips). We incorporate all these features into TTP focusing on high-speed railway systems. We propose a Rail Scheduling and Rolling Stock (RSch-RS) model for timetable planning of high-speed railway systems. This model is composed of two essential elements: i) an infrastructure model for representing the railway network: it includes capacity constraints of the rail network and the Rolling-Stock constraints; and ii) a demand model that defines how the passengers choose the departure time. The resulting model is a mixed-integer programming model which objective function attempts to maximize the profit for the rail operator
Resumo:
Transportation system resilience has been the subject of several recent studies. To assess the resilience of a transportation network, however, it is essential to model its interactions with and reliance on other lifelines. In this work, a bi-level, mixed-integer, stochastic program is presented for quantifying the resilience of a coupled traffic-power network under a host of potential natural or anthropogenic hazard-impact scenarios. A two-layer network representation is employed that includes details of both systems. Interdependencies between the urban traffic and electric power distribution systems are captured through linking variables and logical constraints. The modeling approach was applied on a case study developed on a portion of the signalized traffic-power distribution system in southern Minneapolis. The results of the case study show the importance of explicitly considering interdependencies between critical infrastructures in transportation resilience estimation. The results also provide insights on lifeline performance from an alternative power perspective.