883 resultados para Minimization of open stack problem
Resumo:
The use of hybrid materials including carbon fiber reinforced plastics (CFRPs) and lightweight metals such as titanium are increasing particularly in aerospace applications. Multi-material stacks require a number of holes for the assembly purposes. In this research, drilling trials have been carried out in CFRP, Ti-6Al-4V and CFRP/Ti-6Al-4V stack workpieces using AlTiN coated tungsten carbide drill bit. The effects of process parameters have been investigated. The thrust force, torque, burr formation, delamination, surface roughness and tool wear have been analyzed at various processing condition. The experimental results have shown that the thrust force, torque, burr formation and the average surface roughness increase with the increased feed rate and decrease with the increased cutting speed in drilling of Ti-6Al-4V. In drilling CFRP, delamination and the average surface roughness has similar tendency with the cutting parameters however thrust force and torque rises with the increased cutting speed. The results showed that after making 15 holes in CFRP/Ti-6Al-4V stack, measured thrust forces were increased by 20% in CFRP and by 45% in Ti-6Al-4V. Delamination was found to be much smaller in drilling of CFRP in stack from compared to drilling single CFRP. Tool life was significantly shortened in drilling of stack due to the combination of the wear mechanisms.
Resumo:
Discrete optimization problems are very difficult to solve, even if the dimantion is small. For most of them the problem of finding an ε-approximate solution is already NP-hard.
Resumo:
Resumo:
É possível assistir nos dias de hoje, a um processo tecnológico evolutivo acentuado por toda a parte do globo. No caso das empresas, quer as pequenas, médias ou de grandes dimensões, estão cada vez mais dependentes dos sistemas informatizados para realizar os seus processos de negócio, e consequentemente à geração de informação referente aos negócios e onde, muitas das vezes, os dados não têm qualquer relacionamento entre si. A maioria dos sistemas convencionais informáticos não são projetados para gerir e armazenar informações estratégicas, impossibilitando assim que esta sirva de apoio como recurso estratégico. Portanto, as decisões são tomadas com base na experiência dos administradores, quando poderiam serem baseadas em factos históricos armazenados pelos diversos sistemas. Genericamente, as organizações possuem muitos dados, mas na maioria dos casos extraem pouca informação, o que é um problema em termos de mercados competitivos. Como as organizações procuram evoluir e superar a concorrência nas tomadas de decisão, surge neste contexto o termo Business Intelligence(BI). A GisGeo Information Systems é uma empresa que desenvolve software baseado em SIG (sistemas de informação geográfica) recorrendo a uma filosofia de ferramentas open-source. O seu principal produto baseia-se na localização geográfica dos vários tipos de viaturas, na recolha de dados, e consequentemente a sua análise (quilómetros percorridos, duração de uma viagem entre dois pontos definidos, consumo de combustível, etc.). Neste âmbito surge o tema deste projeto que tem objetivo de dar uma perspetiva diferente aos dados existentes, cruzando os conceitos BI com o sistema implementado na empresa de acordo com a sua filosofia. Neste projeto são abordados alguns dos conceitos mais importantes adjacentes a BI como, por exemplo, modelo dimensional, data Warehouse, o processo ETL e OLAP, seguindo a metodologia de Ralph Kimball. São também estudadas algumas das principais ferramentas open-source existentes no mercado, assim como quais as suas vantagens/desvantagens relativamente entre elas. Em conclusão, é então apresentada a solução desenvolvida de acordo com os critérios enumerados pela empresa como prova de conceito da aplicabilidade da área Business Intelligence ao ramo de Sistemas de informação Geográfica (SIG), recorrendo a uma ferramenta open-source que suporte visualização dos dados através de dashboards.
Resumo:
Three grade three mathematics textbooks were selected arbitrarily (every other) from a total of six currently used in the schools of Ontario. These textbooks were examined through content analysis in order to determine the extent (i. e., the frequency of occurrence) to which problem solving strategies appear in the problems and exercises of grade three mathematics textbooks, and how well they carry through the Ministry's educational goals set out in The Formative Years. Based on Polya's heuristic model, a checklist was developed by the researcher. The checklist had two main categories, textbook problems and process problems and a finer classification according to the difficulty level of a textbook problem; also six commonly used problem solving strategies for the analysis of a process problem. Topics to be analyzed were selected from the subject guideline The Formative Years, and the same topics were selected from each textbook. Frequencies of analyzed problems and exercises were compiled and tabulated textbook by textbook and topic by topic. In making comparisons, simple frequency count and percentage were used in the absence of any known criteria available for judging highor low frequency. Each textbook was coded by three coders trained to use the checklist. The results of analysis showed that while there were large numbers of exercises in each textbook, not very many were framed as problems according to Polya' s model and that process problems form a small fraction of the number of analyzed problems and exercises. There was no pattern observed as to the systematic placement of problems in the textbooks.
Resumo:
This study has three purposes: to establish a chronologically controlled vegetational history for a number of sites in south Southwestern Ontario; to utilize the resulting data to support and/or add to the current understanding of Quaternary geology and stratigraphy, and the glacial and postglacial history of the Great Lakes in south Southwestern Ontario; and to attempt to propose a possible explanation for the extinction of the mastodon in Southern Ontario. Palynological and geochronological analyses were conducted on material collected from eleven sites (east to west): Verbeke Mastodon Site, Woloshko Mastodon Site, Walker Pond II, Pond Mills I, Lake Hunger Bog, Bouckaert Site. Mabee Site, Cornell Bog. Colles Lake I, Folden Mastodon Site and Forest Pond. Individual geochronologically controlled (where possible) vegetational histories were reconstructed for each of the sites investigated. The results of the individual studies, when considered in overview. indicated the existance of an established closed boreal forest throughout south Southwestern Ontario by 10,000 years B.P. This evidence for a significant climatic change coincident throughout south Southwestern Ontario supports the proposed age of 10,000 years B.P. for the Pleistocene/Holocene Boundary (Terasmae, 1972). Remnant patches of 'open spruce parkland' persisted in small local 'wet' areas. It was in these areas that the mastodon was restricted during early Holocene time. With continued encroachment by the surrounding boreal forest, possibly speeded up by this browser's destructive feeding habits, the spruce enclaves shrank and the mastodon became extinct in south Southwestern Ontario. The results of this thesis basically support Dreimanis' (1967, 1968) proposed 'Environmental-Climatic' theory for mastodon extinction. It is suggested that increased dryness during the present interglacial compared to the climate of earlier interglacials may be the key to unravelling the problem of mastodon extinction in eastern North America.
Resumo:
This research studioo the effect of integrated instruction in mathematics and~ science on student achievement in and attitude towards both mathematics and science. A group of grade 9 academic students received instruction in both science and mathematics in an integrated program specifically developed for the purposes of the research. This group was compared to a control group that had received science and mathematics instruction in a traditional, nonintegrated program. The findings showed that in all measures of attitude, there was no significant difference between the students who participated in the integrated science and mathematics program and those who participated in a traditional science and mathematics program. The findings also revealed that integration did improve achievement on some of the measures used. The performance on mathematics open-ended problem-solving tasks improved after participation in the integrated program, suggesting that the integrated students were better able to apply their understanding of mathematics in a real-life context. The performance on the final science exam was also improved for the integrated group. Improvement was not noted on the other measures, which included EQAO scores and laboratory practical tasks. These results raise the issue of the suitability of the instruments used to gauge both achievement and attitude. The accuracy and suitability of traditional measures of achievement are considered. It is argued that they should not necessarily be used as the measure of the value of integrated instruction in a science and mathematics classroom.
Resumo:
L’évaluation économique en santé consiste en l’analyse comparative d’alternatives de services en regard à la fois de leurs coûts et de leurs conséquences. Elle est un outil d’aide à la décision. La grande majorité des décisions concernant l’allocation des ressources sont prises en clinique; particulièrement au niveau des soins primaires. Puisque chaque décision est associée à un coût d’opportunité, la non-prise en compte des considérations économiques dans les pratiques des médecins de famille peut avoir un impact important sur l’efficience du système de santé. Il existe peu de connaissances quant à l’influence des évaluations économiques sur la pratique clinique. L’objet de la thèse est de comprendre le rôle de l’évaluation économique dans la pratique des médecins de famille. Ses contributions font l’objet de quatre articles originaux (philosophique, théorique, méthodologique et empirique). L’article philosophique suggère l’importance des questions de complexité et de réflexivité en évaluation économique. La complexité est la perspective philosophique, (approche générale épistémologique) qui sous-tend la thèse. Cette vision du monde met l’attention sur l’explication et la compréhension et sur les relations et les interactions (causalité interactive). Cet accent sur le contexte et le processus de production des données souligne l’importance de la réflexivité dans le processus de recherche. L’article théorique développe une conception nouvelle et différente du problème de recherche. L’originalité de la thèse réside également dans son approche qui s’appuie sur la perspective de la théorie sociologique de Pierre Bourdieu; une approche théorique cohérente avec la complexité. Opposé aux modèles individualistes de l’action rationnelle, Bourdieu préconise une approche sociologique qui s’inscrit dans la recherche d’une compréhension plus complète et plus complexe des phénomènes sociaux en mettant en lumière les influences souvent implicites qui viennent chaque jour exercer des pressions sur les individus et leurs pratiques. L’article méthodologique présente le protocole d’une étude qualitative de cas multiples avec niveaux d’analyse imbriqués : les médecins de famille (niveau micro-individuel) et le champ de la médecine familiale (niveau macro-structurel). Huit études de cas furent réalisées avec le médecin de famille comme unité principale d’analyse. Pour le niveau micro, la collecte des informations fut réalisée à l’aide d’entrevues de type histoire de vie, de documents et d’observation. Pour le niveau macro, la collecte des informations fut réalisée à l’aide de documents, et d’entrevues de type semi-structuré auprès de huit informateurs clés, de neuf organisations médicales. L’induction analytique fut utilisée. L’article empirique présente l’ensemble des résultats empiriques de la thèse. Les résultats montrent une intégration croissante de concepts en économie dans le discours officiel des organisations de médecine familiale. Cependant, au niveau de la pratique, l'économisation de ce discours ne semble pas être une représentation fidèle de la réalité puisque la très grande majorité des participants n'incarnent pas ce discours. Les contributions incluent une compréhension approfondie des processus sociaux qui influencent les schèmes de perception, de pensée, d’appréciation et d’action des médecins de famille quant au rôle de l’évaluation économique dans la pratique clinique et la volonté des médecins de famille à contribuer à une allocation efficiente, équitable et légitime des ressources.
Resumo:
We are currently at the cusp of a revolution in quantum technology that relies not just on the passive use of quantum effects, but on their active control. At the forefront of this revolution is the implementation of a quantum computer. Encoding information in quantum states as “qubits” allows to use entanglement and quantum superposition to perform calculations that are infeasible on classical computers. The fundamental challenge in the realization of quantum computers is to avoid decoherence – the loss of quantum properties – due to unwanted interaction with the environment. This thesis addresses the problem of implementing entangling two-qubit quantum gates that are robust with respect to both decoherence and classical noise. It covers three aspects: the use of efficient numerical tools for the simulation and optimal control of open and closed quantum systems, the role of advanced optimization functionals in facilitating robustness, and the application of these techniques to two of the leading implementations of quantum computation, trapped atoms and superconducting circuits. After a review of the theoretical and numerical foundations, the central part of the thesis starts with the idea of using ensemble optimization to achieve robustness with respect to both classical fluctuations in the system parameters, and decoherence. For the example of a controlled phasegate implemented with trapped Rydberg atoms, this approach is demonstrated to yield a gate that is at least one order of magnitude more robust than the best known analytic scheme. Moreover this robustness is maintained even for gate durations significantly shorter than those obtained in the analytic scheme. Superconducting circuits are a particularly promising architecture for the implementation of a quantum computer. Their flexibility is demonstrated by performing optimizations for both diagonal and non-diagonal quantum gates. In order to achieve robustness with respect to decoherence, it is essential to implement quantum gates in the shortest possible amount of time. This may be facilitated by using an optimization functional that targets an arbitrary perfect entangler, based on a geometric theory of two-qubit gates. For the example of superconducting qubits, it is shown that this approach leads to significantly shorter gate durations, higher fidelities, and faster convergence than the optimization towards specific two-qubit gates. Performing optimization in Liouville space in order to properly take into account decoherence poses significant numerical challenges, as the dimension scales quadratically compared to Hilbert space. However, it can be shown that for a unitary target, the optimization only requires propagation of at most three states, instead of a full basis of Liouville space. Both for the example of trapped Rydberg atoms, and for superconducting qubits, the successful optimization of quantum gates is demonstrated, at a significantly reduced numerical cost than was previously thought possible. Together, the results of this thesis point towards a comprehensive framework for the optimization of robust quantum gates, paving the way for the future realization of quantum computers.
Resumo:
The high variability of the intensity of suprathermal electron flux in the solar wind is usually ascribed to the high variability of sources on the Sun. Here we demonstrate that a substantial amount of the variability arises from peaks in stream interaction regions, where fast wind runs into slow wind and creates a pressure ridge at the interface. Superposed epoch analysis centered on stream interfaces in 26 interaction regions previously identified in Wind data reveal a twofold increase in 250 eV flux (integrated over pitch angle). Whether the peaks result from the compression there or are solar signatures of the coronal hole boundary, to which interfaces may map, is an open question. Suggestive of the latter, some cases show a displacement between the electron and magnetic field peaks at the interface. Since solar information is transmitted to 1 AU much more quickly by suprathermal electrons compared to convected plasma signatures, the displacement may imply a shift in the coronal hole boundary through transport of open magnetic flux via interchange reconnection. If so, however, the fact that displacements occur in both directions and that the electron and field peaks in the superposed epoch analysis are nearly coincident indicate that any systematic transport expected from differential solar rotation is overwhelmed by a random pattern, possibly owing to transport across a ragged coronal hole boundary.
Conditioning of incremental variational data assimilation, with application to the Met Office system
Resumo:
Implementations of incremental variational data assimilation require the iterative minimization of a series of linear least-squares cost functions. The accuracy and speed with which these linear minimization problems can be solved is determined by the condition number of the Hessian of the problem. In this study, we examine how different components of the assimilation system influence this condition number. Theoretical bounds on the condition number for a single parameter system are presented and used to predict how the condition number is affected by the observation distribution and accuracy and by the specified lengthscales in the background error covariance matrix. The theoretical results are verified in the Met Office variational data assimilation system, using both pseudo-observations and real data.
Resumo:
Historic geomagnetic activity observations have been used to reveal centennial variations in the open solar flux and the near-Earth heliospheric conditions (the interplanetary magnetic field and the solar wind speed). The various methods are in very good agreement for the past 135 years when there were sufficient reliable magnetic observatories in operation to eliminate problems due to site-specific errors and calibration drifts. This review underlines the physical principles that allow these reconstructions to be made, as well as the details of the various algorithms employed and the results obtained. Discussion is included of: the importance of the averaging timescale; the key differences between “range” and “interdiurnal variability” geomagnetic data; the need to distinguish source field sector structure from heliospherically-imposed field structure; the importance of ensuring that regressions used are statistically robust; and uncertainty analysis. The reconstructions are exceedingly useful as they provide calibration between the in-situ spacecraft measurements from the past five decades and the millennial records of heliospheric behaviour deduced from measured abundances of cosmogenic radionuclides found in terrestrial reservoirs. Continuity of open solar flux, using sunspot number to quantify the emergence rate, is the basis of a number of models that have been very successful in reproducing the variation derived from geomagnetic activity. These models allow us to extend the reconstructions back to before the development of the magnetometer and to cover the Maunder minimum. Allied to the radionuclide data, the models are revealing much about how the Sun and heliosphere behaved outside of grand solar maxima and are providing a means of predicting how solar activity is likely to evolve now that the recent grand maximum (that had prevailed throughout the space age) has come to an end.
Resumo:
Results from all phases of the orbits of the Ulysses spacecraft have shown that the magnitude of the radial component of the heliospheric field is approximately independent of heliographic latitude. This result allows the use of near- Earth observations to compute the total open flux of the Sun. For example, using satellite observations of the interplanetary magnetic field, the average open solar flux was shown to have risen by 29% between 1963 and 1987 and using the aa geomagnetic index it was found to have doubled during the 20th century. It is therefore important to assess fully the accuracy of the result and to check that it applies to all phases of the solar cycle. The first perihelion pass of the Ulysses spacecraft was close to sunspot minimum, and recent data from the second perihelion pass show that the result also holds at solar maximum. The high level of correlation between the open flux derived from the various methods strongly supports the Ulysses discovery that the radial field component is independent of latitude. We show here that the errors introduced into open solar flux estimates by assuming that the heliospheric field’s radial component is independent of latitude are similar for the two passes and are of order 25% for daily values, falling to 5% for averaging timescales of 27 days or greater. We compare here the results of four methods for estimating the open solar flux with results from the first and second perehelion passes by Ulysses. We find that the errors are lowest (1–5% for averages over the entire perehelion passes lasting near 320 days), for near-Earth methods, based on either interplanetary magnetic field observations or the aa geomagnetic activity index. The corresponding errors for the Solanki et al. (2000) model are of the order of 9–15% and for the PFSS method, based on solar magnetograms, are of the order of 13–47%. The model of Solanki et al. is based on the continuity equation of open flux, and uses the sunspot number to quantify the rate of open flux emergence. It predicts that the average open solar flux has been decreasing since 1987, as Correspondence to: M. Lockwood (m.lockwood@rl.ac.uk) is observed in the variation of all the estimates of the open flux. This decline combines with the solar cycle variation to produce an open flux during the second (sunspot maximum) perihelion pass of Ulysses which is only slightly larger than that during the first (sunspot minimum) perihelion pass.
Resumo:
In this paper the origin and evolution of the Sun’s open magnetic flux are considered for single magnetic bipoles as they are transported across the Sun. The effects of magnetic flux transport on the radial field at the surface of the Sun are modeled numerically by developing earlier work by Wang, Sheeley, and Lean (2000). The paper considers how the initial tilt of the bipole axis (α) and its latitude of emergence affect the variation and magnitude of the surface and open magnetic flux. The amount of open magnetic flux is estimated by constructing potential coronal fields. It is found that the open flux may evolve independently from the surface field for certain ranges of the tilt angle. For a given tilt angle, the lower the latitude of emergence, the higher the magnitude of the surface and open flux at the end of the simulation. In addition, three types of behavior are found for the open flux depending on the initial tilt angle of the bipole axis. When the tilt is such that α ≥ 2◦ the open flux is independent of the surface flux and initially increases before decaying away. In contrast, for tilt angles in the range −16◦ < α < 2◦ the open flux follows the surface flux and continually decays. Finally, for α ≤ −16◦ the open flux first decays and then increases in magnitude towards a second maximum before decaying away. This behavior of the open flux can be explained in terms of two competing effects produced by differential rotation. Firstly, differential rotation may increase or decrease the open flux by rotating the centers of each polarity of the bipole at different rates when the axis has tilt. Secondly, it decreases the open flux by increasing the length of the polarity inversion line where flux cancellation occurs. The results suggest that, in order to reproduce a realistic model of the Sun’s open magnetic flux over a solar cycle, it is important to have accurate input data on the latitude of emergence of bipoles along with the variation of their tilt angles as the cycle progresses.
Resumo:
The purpose of this paper is to investigate several analytical methods of solving first passage (FP) problem for the Rouse model, a simplest model of a polymer chain. We show that this problem has to be treated as a multi-dimensional Kramers' problem, which presents rich and unexpected behavior. We first perform direct and forward-flux sampling (FFS) simulations, and measure the mean first-passage time $\tau(z)$ for the free end to reach a certain distance $z$ away from the origin. The results show that the mean FP time is getting faster if the Rouse chain is represented by more beads. Two scaling regimes of $\tau(z)$ are observed, with transition between them varying as a function of chain length. We use these simulations results to test two theoretical approaches. One is a well known asymptotic theory valid in the limit of zero temperature. We show that this limit corresponds to fully extended chain when each chain segment is stretched, which is not particularly realistic. A new theory based on the well known Freidlin-Wentzell theory is proposed, where dynamics is projected onto the minimal action path. The new theory predicts both scaling regimes correctly, but fails to get the correct numerical prefactor in the first regime. Combining our theory with the FFS simulations lead us to a simple analytical expression valid for all extensions and chain lengths. One of the applications of polymer FP problem occurs in the context of branched polymer rheology. In this paper, we consider the arm-retraction mechanism in the tube model, which maps exactly on the model we have solved. The results are compared to the Milner-McLeish theory without constraint release, which is found to overestimate FP time by a factor of 10 or more.