904 resultados para Metric interference
Resumo:
We examine the impact of primary and secondary interference on opportunistic relaying in cognitive spectrum sharing networks. In particular, new closed-form exact and asymptotic expressions for the outage probability of cognitive opportunistic relaying are derived over Rayleigh and Nakagami-m fading channels. Our analysis presents revealing insights into the diversity and array gains, diversity-multiplexing tradeoff, impact of primary transceivers' positions, and the optimal position of relays. We highlight that cognitive opportunistic relaying achieves the full diversity gain which is a product of the number of relays and the minimum Nakagami-m fading parameter in the secondary network. Furthermore, we confirm that the diversity gain reduces to zero when the peak interference constraint in the secondary network is proportional to the interference power from the primary network.
Resumo:
We propose transmit antenna selection (TAS) in decode-and-forward (DF) relaying as an effective approach to reduce the interference in underlay spectrum sharing networks with multiple primary users (PUs) and multiple antennas at the secondary users (SUs). We compare two distinct protocols: 1) TAS with receiver maximal-ratio combining (TAS/MRC) and 2) TAS with receiver selection combining (TAS/SC). For each protocol, we derive new closed-form expressions for the exact and asymptotic outage probability with independent Nakagami-m fading in the primary and secondary networks. Our results are valid for two scenarios related to the maximum SU transmit power, i.e., P, and the peak PU interference temperature, i.e., Q. When P is proportional to Q, our results confirm that TAS/MRC and TAS/SC relaying achieve the same full diversity gain. As such, the signal-to-noise ratio (SNR) advantage of TAS/MRC relaying relative to TAS/SC relaying is characterized as a simple ratio of their respective SNR gains. When P is independent of Q, we find that an outage floor is obtained in the large P regime where the SU transmit power is constrained by a fixed value of Q. This outage floor is accurately characterized by our exact and asymptotic results.
Resumo:
We apply the time-dependent R-matrix method to investigate harmonic generation from Ne+ at a wavelength of 390 nm and intensities up to 1015 W cm−2. The 1s22s22p4 (3Pe,1De, and 1Se) states of Ne2+ are included as residual-ion states to assess the influence of interference between photoionization channels associated with these thresholds. The harmonic spectrum is well approximated by calculations in which only the 3Pe and 1De thresholds are taken into account, but no satisfactory spectrum is obtained when a single threshold is taken into account. Within the harmonic plateau, extending to about 100 eV, individual harmonics can be suppressed at particular intensities when all Ne2+ thresholds are taken into account. The suppression is not observed when only a single threshold is accounted for. Since the suppression is dependent on intensity, it may be difficult to observe experimentally.
Resumo:
Cognitive radio (CR) with spectrum-sharing has been envisioned as emerging technology for the next generation of mobile and wireless networks by allowing the unlicensed customers simultaneously utilize the licensed radio frequency spectrums. However, the CR has faced some practical challenges due to its deduced system performance as compared to non spectrum-sharing counterpart. In this paper, we therefore consider the potential of incorporating the cooperative communications into CR by introducing the concept of reactive multiple decode-and-forward (DF) relays. In particular, we derive new results for exact and asymptotic expressions for the performance of cognitive relay networks with K-th best relay selection. Our novel results have exhibited the significance of using relay networks to enhance the system performance of CR.
Resumo:
Viral infection triggers an early host response through activation of pattern recognition receptors, including Toll-like receptors (TLR). TLR signaling cascades induce production of type I interferons and proinflammatory cytokines involved in establishing an anti-viral state as well as in orchestrating ensuing adaptive immunity. To allow infection, replication, and persistence, (herpes)viruses employ ingenious strategies to evade host immunity. The human gamma-herpesvirus Epstein-Barr virus (EBV) is a large, enveloped DNA virus persistently carried by more than 90% of adults worldwide. It is the causative agent of infectious mononucleosis and is associated with several malignant tumors. EBV activates TLRs, including TLR2, TLR3, and TLR9. Interestingly, both the expression of and signaling by TLRs is attenuated during productive EBV infection. Ubiquitination plays an important role in regulating TLR signaling and is controlled by ubiquitin ligases and deubiquitinases (DUBs). The EBV genome encodes three proteins reported to exert in vitro deubiquitinase activity. Using active site-directed probes, we show that one of these putative DUBs, the conserved herpesvirus large tegument protein BPLF1, acts as a functional DUB in EBV-producing B cells. The BPLF1 enzyme is expressed during the late phase of lytic EBV infection and is incorporated into viral particles. The N-terminal part of the large BPLF1 protein contains the catalytic site for DUB activity and suppresses TLR-mediated activation of NF-κB at, or downstream of, the TRAF6 signaling intermediate. A catalytically inactive mutant of this EBV protein did not reduce NF-κB activation, indicating that DUB activity is essential for attenuating TLR signal transduction. Our combined results show that EBV employs deubiquitination of signaling intermediates in the TLR cascade as a mechanism to counteract innate anti-viral immunity of infected hosts.
Resumo:
We show that a spin-1/2 particle in the gravitational field of a massive body of radius R which slightly exceeds the Schwarzschild radius rs, possesses a dense spectrum of narrow resonances. Their lifetimes and density tend to infinity in the limit R → rs. We determine the cross section of the particle capture into these resonances and show that it is equal to the spin-1/2 absorption cross section for a Schwarzschild black hole. Thus black-hole properties may emerge in a non-singular static metric prior to the formation of a black hole.
Resumo:
In this paper, we investigate the end-to-end performance of dual-hop proactive decode-and-forward relaying networks with Nth best relay selection in the presence of two practical deleterious effects: i) hardware impairment and ii) cochannel interference. In particular, we derive new exact and asymptotic closed-form expressions for the outage probability and average channel capacity of Nth best partial and opportunistic relay selection schemes over Rayleigh fading channels. Insightful discussions are provided. It is shown that, when the system cannot select the best relay for cooperation, the partial relay selection scheme outperforms the opportunistic method under the impact of the same co-channel interference (CCI). In addition, without CCI but under the effect of hardware impairment, it is shown that both selection strategies have the same asymptotic channel capacity. Monte Carlo simulations are presented to corroborate our analysis.
Resumo:
The sustainable control of animal parasitic nematodes requires the development of efficient functional genomics platforms to facilitate target validation and enhance anthelmintic discovery. Unfortunately, the utility of RNA interference (RNAi) for the validation of novel drug targets in nematode parasites remains problematic. Ascaris suum is an important veterinary parasite and a zoonotic pathogen. Here we show that adult A. suum is RNAi competent, and highlight the induction, spread and consistency of RNAi across multiple tissue types. This platform provides a new opportunity to undertake whole organism-, tissue- and cell-level gene function studies to enhance target validation processes for nematode parasites of veterinary/medical significance.
Resumo:
To evaluate the performance of the co-channel transmission based communication, we propose a new metric for area spectral efficiency (ASE) of interference limited ad-hoc network by assuming that the nodes are randomly distributed according to a Poisson point processes (PPP). We introduce a utility function, U = ASE/delay and derive the optimal ALOHA transmission probability p and the SIR threshold τ that jointly maximize the ASE and minimize the local delay. Finally, numerical results have been conducted to confirm that the joint optimization based on the U metric achieves a significant performance gain compared to conventional systems.
Resumo:
A RkNN query returns all objects whose nearest k neighbors
contain the query object. In this paper, we consider RkNN
query processing in the case where the distances between
attribute values are not necessarily metric. Dissimilarities
between objects could then be a monotonic aggregate of dissimilarities
between their values, such aggregation functions
being specified at query time. We outline real world cases
that motivate RkNN processing in such scenarios. We consider
the AL-Tree index and its applicability in RkNN query
processing. We develop an approach that exploits the group
level reasoning enabled by the AL-Tree in RkNN processing.
We evaluate our approach against a Naive approach
that performs sequential scans on contiguous data and an
improved block-based approach that we provide. We use
real-world datasets and synthetic data with varying characteristics
for our experiments. This extensive empirical
evaluation shows that our approach is better than existing
methods in terms of computational and disk access costs,
leading to significantly better response times.
Resumo:
We investigate electron dynamics in the hydrogen atom and the hydrogen molecular ion when exposed to long wavelength laser pulses yet having intensity insufficient to ionize the system. We find that the field is still able to drive the electron, leading to time-dependent interference effects.