940 resultados para Methods: Data Analysis
Resumo:
OBJECTIVE To evaluate the individual and contextual determinants of the use of health care services in the metropolitan region of Sao Paulo.METHODS Data from the Sao Paulo Megacity study – the Brazilian version of the World Mental Health Survey multicenter study – were used. A total of 3,588 adults living in 69 neighborhoods in the metropolitan region of Sao Paulo, SP, Southeastern Brazil, including 38 municipalities and 31 neighboring districts, were selected using multistratified sampling of the non-institutionalized population. Multilevel Bayesian logistic models were adjusted to identify the individual and contextual determinants of the use of health care services in the past 12 months and presence of a regular physician for routine care.RESULTS The contextual characteristics of the place of residence (income inequality, violence, and median income) showed no significant correlation (p > 0.05) with the use of health care services or with the presence of a regular physician for routine care. The only exception was the negative correlation between living in areas with high income inequality and presence of a regular physician (OR: 0.77; 95%CI 0.60;0.99) after controlling for individual characteristics. The study revealed a strong and consistent correlation between individual characteristics (mainly education and possession of health insurance), use of health care services, and presence of a regular physician. Presence of chronic and mental illnesses was strongly correlated with the use of health care services in the past year (regardless of the individual characteristics) but not with the presence of a regular physician.CONCLUSIONS Individual characteristics including higher education and possession of health insurance were important determinants of the use of health care services in the metropolitan area of Sao Paulo. A better understanding of these determinants is essential for the development of public policies that promote equitable use of health care services.
Resumo:
A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Information Systems.
Resumo:
Complex industrial plants exhibit multiple interactions among smaller parts and with human operators. Failure in one part can propagate across subsystem boundaries causing a serious disaster. This paper analyzes the industrial accident data series in the perspective of dynamical systems. First, we process real world data and show that the statistics of the number of fatalities reveal features that are well described by power law (PL) distributions. For early years, the data reveal double PL behavior, while, for more recent time periods, a single PL fits better into the experimental data. Second, we analyze the entropy of the data series statistics over time. Third, we use the Kullback–Leibler divergence to compare the empirical data and multidimensional scaling (MDS) techniques for data analysis and visualization. Entropy-based analysis is adopted to assess complexity, having the advantage of yielding a single parameter to express relationships between the data. The classical and the generalized (fractional) entropy and Kullback–Leibler divergence are used. The generalized measures allow a clear identification of patterns embedded in the data.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Física
Resumo:
INTRODUCTION: A time series study of admissions, deaths and acute cases was conducted in order to evaluate the context of Chagas disease in Pernambuco. METHODS: Data reported to the Information Technology Department of the Brazilian National Health Service between 1980 and 2008 was collected for regions and Federal Units of Brazil; and microregions and municipalities of Pernambuco. Rates (per 100,000 inhabitants) of hospitalization, mortality and acute cases were calculated using a national hospital database (SIH), a national mortality database (SIM) and the national Information System for Notifiable Diseases (SINAN), respectively. RESULTS: The national average for Chagas disease admissions was 0.99 from 1995 to 2008. Pernambuco obtained a mean of 0.39 in the same period, with the highest rates being concentrated in the interior of the state. The state obtained a mean mortality rate of 1.56 between 1980 and 2007, which was lower than the national average (3.66). The mortality rate has tended to decline nationally, while it has remained relatively unchanged in Pernambuco. Interpolating national rates of admissions and deaths, mortality rates were higher than hospitalization rates between 1995 and 2007. The same occurred in Pernambuco, except for 2003. Between 2001 and 2006, rates for acute cases were 0.56 and 0.21 for Brazil and Pernambuco, respectively. CONCLUSIONS: Although a decrease in Chagas mortality has occurred in Brazil, the disease remains a serious public health problem, especially in the Northeast region. It is thus essential that medical care, prevention and control regarding Chagas disease be maintained and improved.
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
The paper investigates the role of real exchange rate misalignment on long-run growth for a set of ninety countries using time series data from 1980 to 2004. We first estimate a panel data model (using fixed and random effects) for the real exchange rate, with different model specifications, in order to produce estimates of the equilibrium real exchange rate and this is then used to construct measures of real exchange rate misalignment. We also provide an alternative set of estimates of real exchange rate misalignment using panel cointegration methods. The variables used in our real exchange rate models are: real per capita GDP; net foreign assets; terms of trade and government consumption. The results for the two-step System GMM panel growth models indicate that the coefficients for real exchange rate misalignment are positive for different model specification and samples, which means that a more depreciated (appreciated) real exchange rate helps (harms) long-run growth. The estimated coefficients are higher for developing and emerging countries.
Resumo:
SUMMARY : Eukaryotic DNA interacts with the nuclear proteins using non-covalent ionic interactions. Proteins can recognize specific nucleotide sequences based on the sterical interactions with the DNA and these specific protein-DNA interactions are the basis for many nuclear processes, e.g. gene transcription, chromosomal replication, and recombination. New technology termed ChIP-Seq has been recently developed for the analysis of protein-DNA interactions on a whole genome scale and it is based on immunoprecipitation of chromatin and high-throughput DNA sequencing procedure. ChIP-Seq is a novel technique with a great potential to replace older techniques for mapping of protein-DNA interactions. In this thesis, we bring some new insights into the ChIP-Seq data analysis. First, we point out to some common and so far unknown artifacts of the method. Sequence tag distribution in the genome does not follow uniform distribution and we have found extreme hot-spots of tag accumulation over specific loci in the human and mouse genomes. These artifactual sequence tags accumulations will create false peaks in every ChIP-Seq dataset and we propose different filtering methods to reduce the number of false positives. Next, we propose random sampling as a powerful analytical tool in the ChIP-Seq data analysis that could be used to infer biological knowledge from the massive ChIP-Seq datasets. We created unbiased random sampling algorithm and we used this methodology to reveal some of the important biological properties of Nuclear Factor I DNA binding proteins. Finally, by analyzing the ChIP-Seq data in detail, we revealed that Nuclear Factor I transcription factors mainly act as activators of transcription, and that they are associated with specific chromatin modifications that are markers of open chromatin. We speculate that NFI factors only interact with the DNA wrapped around the nucleosome. We also found multiple loci that indicate possible chromatin barrier activity of NFI proteins, which could suggest the use of NFI binding sequences as chromatin insulators in biotechnology applications. RESUME : L'ADN des eucaryotes interagit avec les protéines nucléaires par des interactions noncovalentes ioniques. Les protéines peuvent reconnaître les séquences nucléotidiques spécifiques basées sur l'interaction stérique avec l'ADN, et des interactions spécifiques contrôlent de nombreux processus nucléaire, p.ex. transcription du gène, la réplication chromosomique, et la recombinaison. Une nouvelle technologie appelée ChIP-Seq a été récemment développée pour l'analyse des interactions protéine-ADN à l'échelle du génome entier et cette approche est basée sur l'immuno-précipitation de la chromatine et sur la procédure de séquençage de l'ADN à haut débit. La nouvelle approche ChIP-Seq a donc un fort potentiel pour remplacer les anciennes techniques de cartographie des interactions protéine-ADN. Dans cette thèse, nous apportons de nouvelles perspectives dans l'analyse des données ChIP-Seq. Tout d'abord, nous avons identifié des artefacts très communs associés à cette méthode qui étaient jusqu'à présent insoupçonnés. La distribution des séquences dans le génome ne suit pas une distribution uniforme et nous avons constaté des positions extrêmes d'accumulation de séquence à des régions spécifiques, des génomes humains et de la souris. Ces accumulations des séquences artéfactuelles créera de faux pics dans toutes les données ChIP-Seq, et nous proposons différentes méthodes de filtrage pour réduire le nombre de faux positifs. Ensuite, nous proposons un nouvel échantillonnage aléatoire comme un outil puissant d'analyse des données ChIP-Seq, ce qui pourraient augmenter l'acquisition de connaissances biologiques à partir des données ChIP-Seq. Nous avons créé un algorithme d'échantillonnage aléatoire et nous avons utilisé cette méthode pour révéler certaines des propriétés biologiques importantes de protéines liant à l'ADN nommés Facteur Nucléaire I (NFI). Enfin, en analysant en détail les données de ChIP-Seq pour la famille de facteurs de transcription nommés Facteur Nucléaire I, nous avons révélé que ces protéines agissent principalement comme des activateurs de transcription, et qu'elles sont associées à des modifications de la chromatine spécifiques qui sont des marqueurs de la chromatine ouverte. Nous pensons que lés facteurs NFI interagir uniquement avec l'ADN enroulé autour du nucléosome. Nous avons également constaté plusieurs régions génomiques qui indiquent une éventuelle activité de barrière chromatinienne des protéines NFI, ce qui pourrait suggérer l'utilisation de séquences de liaison NFI comme séquences isolatrices dans des applications de la biotechnologie.
Resumo:
Planners in public and private institutions would like coherent forecasts of the components of age-specic mortality, such as causes of death. This has been di cult toachieve because the relative values of the forecast components often fail to behave ina way that is coherent with historical experience. In addition, when the group forecasts are combined the result is often incompatible with an all-groups forecast. It hasbeen shown that cause-specic mortality forecasts are pessimistic when compared withall-cause forecasts (Wilmoth, 1995). This paper abandons the conventional approachof using log mortality rates and forecasts the density of deaths in the life table. Sincethese values obey a unit sum constraint for both conventional single-decrement life tables (only one absorbing state) and multiple-decrement tables (more than one absorbingstate), they are intrinsically relative rather than absolute values across decrements aswell as ages. Using the methods of Compositional Data Analysis pioneered by Aitchison(1986), death densities are transformed into the real space so that the full range of multivariate statistics can be applied, then back-transformed to positive values so that theunit sum constraint is honoured. The structure of the best-known, single-decrementmortality-rate forecasting model, devised by Lee and Carter (1992), is expressed incompositional form and the results from the two models are compared. The compositional model is extended to a multiple-decrement form and used to forecast mortalityby cause of death for Japan
Resumo:
Factor analysis as frequent technique for multivariate data inspection is widely used also for compositional data analysis. The usual way is to use a centered logratio (clr)transformation to obtain the random vector y of dimension D. The factor model istheny = Λf + e (1)with the factors f of dimension k & D, the error term e, and the loadings matrix Λ.Using the usual model assumptions (see, e.g., Basilevsky, 1994), the factor analysismodel (1) can be written asCov(y) = ΛΛT + ψ (2)where ψ = Cov(e) has a diagonal form. The diagonal elements of ψ as well as theloadings matrix Λ are estimated from an estimation of Cov(y).Given observed clr transformed data Y as realizations of the random vectory. Outliers or deviations from the idealized model assumptions of factor analysiscan severely effect the parameter estimation. As a way out, robust estimation ofthe covariance matrix of Y will lead to robust estimates of Λ and ψ in (2), seePison et al. (2003). Well known robust covariance estimators with good statisticalproperties, like the MCD or the S-estimators (see, e.g. Maronna et al., 2006), relyon a full-rank data matrix Y which is not the case for clr transformed data (see,e.g., Aitchison, 1986).The isometric logratio (ilr) transformation (Egozcue et al., 2003) solves thissingularity problem. The data matrix Y is transformed to a matrix Z by usingan orthonormal basis of lower dimension. Using the ilr transformed data, a robustcovariance matrix C(Z) can be estimated. The result can be back-transformed tothe clr space byC(Y ) = V C(Z)V Twhere the matrix V with orthonormal columns comes from the relation betweenthe clr and the ilr transformation. Now the parameters in the model (2) can beestimated (Basilevsky, 1994) and the results have a direct interpretation since thelinks to the original variables are still preserved.The above procedure will be applied to data from geochemistry. Our specialinterest is on comparing the results with those of Reimann et al. (2002) for the Kolaproject data
Resumo:
The statistical analysis of compositional data should be treated using logratios of parts,which are difficult to use correctly in standard statistical packages. For this reason afreeware package, named CoDaPack was created. This software implements most of thebasic statistical methods suitable for compositional data.In this paper we describe the new version of the package that now is calledCoDaPack3D. It is developed in Visual Basic for applications (associated with Excel©),Visual Basic and Open GL, and it is oriented towards users with a minimum knowledgeof computers with the aim at being simple and easy to use.This new version includes new graphical output in 2D and 3D. These outputs could bezoomed and, in 3D, rotated. Also a customization menu is included and outputs couldbe saved in jpeg format. Also this new version includes an interactive help and alldialog windows have been improved in order to facilitate its use.To use CoDaPack one has to access Excel© and introduce the data in a standardspreadsheet. These should be organized as a matrix where Excel© rows correspond tothe observations and columns to the parts. The user executes macros that returnnumerical or graphical results. There are two kinds of numerical results: new variablesand descriptive statistics, and both appear on the same sheet. Graphical output appearsin independent windows. In the present version there are 8 menus, with a total of 38submenus which, after some dialogue, directly call the corresponding macro. Thedialogues ask the user to input variables and further parameters needed, as well aswhere to put these results. The web site http://ima.udg.es/CoDaPack contains thisfreeware package and only Microsoft Excel© under Microsoft Windows© is required torun the software.Kew words: Compositional data Analysis, Software
Resumo:
BACKGROUND: Adherence to combination antiretroviral therapy (cART) is a dynamic process, however, changes in adherence behavior over time are insufficiently understood. METHODS: Data on self-reported missed doses of cART was collected every 6 months in Swiss HIV Cohort Study participants. We identified behavioral groups associated with specific cART adherence patterns using trajectory analyses. Repeated measures logistic regression identified predictors of changes in adherence between consecutive visits. RESULTS: Six thousand seven hundred nine individuals completed 49,071 adherence questionnaires [median 8 (interquartile range: 5-10)] during a median follow-up time of 4.5 years (interquartile range: 2.4-5.1). Individuals were clustered into 4 adherence groups: good (51.8%), worsening (17.4%), improving (17.6%), and poor adherence (13.2%). Independent predictors of worsening adherence were younger age, basic education, loss of a roommate, starting intravenous drug use, increasing alcohol intake, depression, longer time with HIV, onset of lipodystrophy, and changing care provider. Independent predictors of improvements in adherence were regimen simplification, changing class of cART, less time on cART, and starting comedications. CONCLUSIONS: Treatment, behavioral changes, and life events influence patterns of drug intake in HIV patients. Clinical care providers should routinely monitor factors related to worsening adherence and intervene early to reduce the risk of treatment failure and drug resistance.
Resumo:
BACKGROUND Persons with schizophrenia and related disorders may be particularly sensitive to a number of determinants of service use, including those related with illness, socio-demographic characteristics and organizational factors. The objective of this study is to identify factors associated with outpatient contacts at community mental health services of patients with schizophrenia or related disorders. METHODS This cross-sectional study analyzed 1097 patients. The main outcome measure was the total number of outpatient consultations during one year. Independent variables were related to socio-demographic, clinical and use of service factors. Data were collected from clinical records. RESULTS The multilevel linear regression model explained 46.35% of the variance. Patients with significantly more contacts with ambulatory services were not working and were receiving welfare benefits (p = 0.02), had no formal education (p = 0.02), had a global level of severity of two or three (four being the most severe) (p < 0.001), with one or more inpatient admissions (p < 0.001), and in contact with both types of professional (nurses and psychiatrists) (p < 0.001). The patients with the fewest ambulatory contacts were those with diagnoses of persistent delusional disorders (p = 0.04) and those who were attended by four of the 13 psychiatrists (p < 0.001). CONCLUSIONS As expected, the variables that explained the use of community service could be viewed as proxies for severity of illness. The most surprising finding, however, was that a group of four psychiatrists was also independently associated with use of ambulatory services by patients with schizophrenia or related disorders. More research is needed to carefully examine how professional support networks interact to affect use of mental health.
Resumo:
BACKGROUND Patients with chronic obstructive pulmonary disease (COPD) have a modified clinical presentation of venous thromboembolism (VTE) but also a worse prognosis than non-COPD patients with VTE. As it may induce therapeutic modifications, we evaluated the influence of the initial VTE presentation on the 3-month outcomes in COPD patients. METHODS COPD patients included in the on-going world-wide RIETE Registry were studied. The rate of pulmonary embolism (PE), major bleeding and death during the first 3 months in COPD patients were compared according to their initial clinical presentation (acute PE or deep vein thrombosis (DVT)). RESULTS Of the 4036 COPD patients included, 2452 (61%; 95% CI: 59.2-62.3) initially presented with PE. PE as the first VTE recurrence occurred in 116 patients, major bleeding in 101 patients and mortality in 443 patients (Fatal PE: first cause of death). Multivariate analysis confirmed that presenting with PE was associated with higher risk of VTE recurrence as PE (OR, 2.04; 95% CI: 1.11-3.72) and higher risk of fatal PE (OR, 7.77; 95% CI: 2.92-15.7). CONCLUSIONS COPD patients presenting with PE have an increased risk for PE recurrences and fatal PE compared with those presenting with DVT alone. More efficient therapy is needed in this subtype of patients.
Resumo:
BACKGROUND The relationship between deprivation and mortality in urban settings is well established. This relationship has been found for several causes of death in Spanish cities in independent analyses (the MEDEA project). However, no joint analysis which pools the strength of this relationship across several cities has ever been undertaken. Such an analysis would determine, if appropriate, a joint relationship by linking the associations found. METHODS A pooled cross-sectional analysis of the data from the MEDEA project has been carried out for each of the causes of death studied. Specifically, a meta-analysis has been carried out to pool the relative risks in eleven Spanish cities. Different deprivation-mortality relationships across the cities are considered in the analysis (fixed and random effects models). The size of the cities is also considered as a possible factor explaining differences between cities. RESULTS Twenty studies have been carried out for different combinations of sex and causes of death. For nine of them (men: prostate cancer, diabetes, mental illnesses, Alzheimer's disease, cerebrovascular disease; women: diabetes, mental illnesses, respiratory diseases, cirrhosis) no differences were found between cities in the effect of deprivation on mortality; in four cases (men: respiratory diseases, all causes of mortality; women: breast cancer, Alzheimer's disease) differences not associated with the size of the city have been determined; in two cases (men: cirrhosis; women: lung cancer) differences strictly linked to the size of the city have been determined, and in five cases (men: lung cancer, ischaemic heart disease; women: ischaemic heart disease, cerebrovascular diseases, all causes of mortality) both kinds of differences have been found. Except for lung cancer in women, every significant relationship between deprivation and mortality goes in the same direction: deprivation increases mortality. Variability in the relative risks across cities was found for general mortality for both sexes. CONCLUSIONS This study provides a general overview of the relationship between deprivation and mortality for a sample of large Spanish cities combined. This joint study allows the exploration of and, if appropriate, the quantification of the variability in that relationship for the set of cities considered.