762 resultados para Mechanical mixtures
Resumo:
With the advent of new technologies, experience with long-term mechanical circulatory support (MCS) is rapidly growing. Candidates to MCS are selected based on concepts, strategies and classifications that are specific to this indication. As results drastically improve, supported by stronger scientific evidence, the trend is towards earlier implantation. An adequate pre-implant follow-up is mandatory in order to avoid missing the best window of opportunity for implantation. While on chronic support, the hemodynamic profile of patients with continuous-flow ventricular assist devices is unique and remarkably influenced by the hydration status. Optimal management of these patients from the pre-implant phase to the long-term support phase requires a multidisciplinary approach that is similar to that already long validated for organ transplantation.
Resumo:
OBJECTIVE: To evaluate the influence of nursing on the duration of weaning from mechanical ventilation in patients with chronic obstructive pulmonary disease. DESIGN: Data were collected prospectively over a 1-yr period (study year) and compared with previously collected prospective data recorded in our chronic obstructive pulmonary disease database during a 5-yr period. SETTING: The medical intensive care unit (ICU) of a university hospital. PATIENTS: Eighty-seven patients with chronic obstructive pulmonary disease. Fifteen patients had chronic obstructive pulmonary disease that required mechanical ventilation for acute exacerbation of their disease (study year), and 72 were patients with chronic obstructive pulmonary disease from the previously collected data. INTERVENTIONS: The ICU course (duration of mechanical ventilation, mortality) was recorded, as well as several respiratory parameters (pulmonary function tests and arterial blood gases in stable conditions, and nutritional status), and they were compared with an "index of nursing." MEASUREMENTS AND MAIN RESULTS: We developed an "index of nursing", comparing the effective workforce of the nurses (number and qualifications) with the ideal workforce required by the number of patients and the severity of their diseases. A value of 1.0 represented a perfect match between the needed and the effectively present nurses, whereas a lesser value signified a diminished available workforce. This index was compared with the complications and duration of weaning from mechanical ventilation. During the first 5 yrs, the duration of mechanical ventilation increased progressively from 7.3 +/- 8.0 to 38.2 +/- 25.8 days (p = .006). A significant inverse correlation between the duration of mechanical ventilation and the nursing index (p = .025) was found. In the sixth comparative year, the number of nurses increased (nursing index = 1.05) and the duration of mechanical ventilation decreased to 9.9 +/- 13 days (p < .001, yr 5 vs. yr 6). CONCLUSIONS: The quality of nursing appears to be a measurable and critical factor in the weaning from mechanical ventilation of patients with chronic obstructive pulmonary disease. Below a threshold in the available workforce of ICU nurses, the weaning duration of patients with chronic obstructive pulmonary disease increases dramatically. Therefore, very close attention should be given to the education and number of ICU nurses.
Resumo:
Various test methods exist for measuring heat of cement hydration; however, most current methods require expensive equipment, complex testing procedures, and/or extensive time, thus not being suitable for field application. The objectives of this research are to identify, develop, and evaluate a standard test procedure for characterization and quality control of pavement concrete mixtures using a calorimetry technique. This research project has three phases. Phase I was designed to identify the user needs, including performance requirements and precision and bias limits, and to synthesize existing test methods for monitoring the heat of hydration, including device types, configurations, test procedures, measurements, advantages, disadvantages, applications, and accuracy. Phase II was designed to conduct experimental work to evaluate the calorimetry equipment recommended from the Phase I study and to develop a standard test procedure for using the equipment and interpreting the test results. Phase II also includes the development of models and computer programs for prediction of concrete pavement performance based on the characteristics of heat evolution curves. Phase III was designed to study for further development of a much simpler, inexpensive calorimeter for field concrete. In this report, the results from the Phase I study are presented, the plan for the Phase II study is described, and the recommendations for Phase III study are outlined. Phase I has been completed through three major activities: (1) collecting input and advice from the members of the project Technical Working Group (TWG), (2) conducting a literature survey, and (3) performing trials at the CP Tech Center’s research lab. The research results indicate that in addition to predicting maturity/strength, concrete heat evolution test results can also be used for (1) forecasting concrete setting time, (2) specifying curing period, (3) estimating risk of thermal cracking, (4) assessing pavement sawing/finishing time, (5) characterizing cement features, (6) identifying incompatibility of cementitious materials, (7) verifying concrete mix proportions, and (8) selecting materials and/or mix designs for given environmental conditions. Besides concrete materials and mix proportions, the configuration of the calorimeter device, sample size, mixing procedure, and testing environment (temperature) also have significant influences on features of concrete heat evolution process. The research team has found that although various calorimeter tests have been conducted for assorted purposes and the potential uses of calorimeter tests are clear, there is no consensus on how to utilize the heat evolution curves to characterize concrete materials and how to effectively relate the characteristics of heat evolution curves to concrete pavement performance. The goal of the Phase II study is to close these gaps.
Resumo:
Erosão dos solos em Cabo Verde: estudo dos processos e quantificação à escala de três bacias hidrográficas O arquipélago de Cabo Verde é constituído por 10 ilhas vulcânicas pertence à zona do Sahel que se estende do Atlântico ao Mar Vermelho. Desde então, várias décadas, Cabo Verde é afectado pela desertificação causada principalmente pela recessão climatica e a erosão do solo. Esses fatores, aliados à alta pressão humana sobre os recursos, a topografia acidentada e chuvas tropicais por vezes torrenciais, causam sérios danos aos solos. No entanto, desde sua independência em 1975, o Governo realizou um amplo programa de arborização, recuperação de áreas degradadas e a correcção dos leitos das ribeiras. No entanto, a investigação, muito pouco foi realizada para avaliar as acções de protecção e conservação do solo e da água. Portanto, não há dados sobre o problema da degradação das terras nem balanços. Como parte deste trabalho, foram estudados vários factores que controlam a erosão do solo pela água. Especificamente, buscou-se diferenciar os efeitos das actividades humanas, incluindo a agricultura, os factores climáticos, como chuva e geração de escoamento. Também estabeleceu os primeiros balanços das exportações de matérias em suspensão e em solução no contexto do arquipélago de Cabo Verde. O estudo foi realizado em três bacias hidrográficas da ilha de Santiago, Cabo Verde. Estas três bacias hidrográficas (Longueira, Grande e Godim) estão localizadas na parte central da ilha de Santiago e representam os diversos tipos de uso da terra e as diferentes zonas bioclimaticas da ilha. Existe um gradiente climático entre as três bacias hidrográficas. Na verdade, Longueira que abrange uma área de 4,18 km2, tem um declive médio de 47 %, uma zona florestada de 69% e uma área agrícola de 17 %. Grande com uma área de 1,87 km2, é localizada numa zona sub humida com um declive médio de 50%, é essencialmente agrícola. Godim, com uma área de 2,0 km2, é localizado numa zona semi-árida com um declive médio de 32%, é particularmente uma zona agricola. Para estes três bacias hidrográficas, as cheias foram medidas e amostradas de 2004 a 2009. A bacia de Longueira teve um maior acompanhamento, nomeadamente em termos de amostragem e monitoramento dos escoamentos. Em cada amostra foram feitas a determinação da concentração de matérias em suspensão e a análise dos principais elementos quimicos. Os resultados mostram que a erosão mecânica nas três bacias hidrográficas é caracterizada por uma forte variabilidade espacial e temporal. Durante o período de 2005-2009, o balanço anual média para as bacias hidrográficas de Longueira, Grande e Godim é: 4266, 157 e 10,1 t.km2.an-1, respectivamente. A estação das chuvas de 2006 foi a mais erosiva para as três bacias, particularmente em Longueira, com 2 cheias excepcionais, que têm gerado uma concentração média de sólidos em suspensão superior a 100 g / l. Porém, as estações do ano de 2005 e 2008 foram de uma forma geral menos erosivas porque as concentrações médias não inferiores a 20 g / l. Além disso, não houve cheias para as temporadas 2005 e 2007 para a bacia do Godim. Na bacia de Longueira, o estudo dos fenómenos de histerese na caracterização das cheias mostrou que a evolução temporal das exportações de sólidos em suspensão durante a temporada é fortemente influenciada pelas atividades agrícolas. Na verdade, a primeira cheia causou uma exportação maciça de sedimento disponível e localizado no leito da ribeira. Assim, a segunda cheia exportou menos sedimentos. Um mês após as primeiras chuvas, a prática da monda que reduz a densidade da cobertura vegetal e destructura a camada superficial do solo, gerou uma grande quantidade de sedimento que novamente permitiu uma exportação muito forte de sedimentos durante a terceira forte cheia. Os resultados da erosão química na bacia de Longueira indicam que a taxa de erosão é de 45 t.km2.an-1 com uma forte variabilidade temporal. Na verdade, as temporadas de 2006 e 2007 são as mais erosivas, enquanto 2005 teve uma exportação de matérias disolvidas baixa. A utilização do modelo EMMA (End- Members Mixing Analysis) mostra que os escoamentos hipodermico e profundo, alimentandos os fluxos de elementos dissolvidos são os principais factores da erosão química. É mostrado que esses fluxos causam mais de 90% dos fluxos de erosão química. O escoamento superficial, que contribui com cerca de 70% na formação das cheias, é o maior factor da erosão mecânica do solo.
Resumo:
OBJECTIVES: In vitro mechanical injury of articular cartilage is useful to identify events associated with development of post-traumatic osteoarthritis (OA). To date, many in vitro injury models have used animal cartilage despite the greater clinical relevance of human cartilage. We aimed to characterize a new in vitro injury model using elderly human femoral head cartilage and compare its behavior to that of an existing model with adult bovine humeral head cartilage. DESIGN: Mechanical properties of human and bovine cartilage disks were characterized by elastic modulus and hydraulic permeability in radially confined axial compression, and by Young's modulus, Poisson's ratio, and direction-dependent radial strain in unconfined compression. Biochemical composition was assessed in terms of tissue water, solid, and glycosaminoglycan (GAG) contents. Responses to mechanical injury were assessed by observation of macroscopic superficial tissue cracks and histological measurements of cell viability following single injurious ramp loads at 7 or 70%/s strain rate to 3 or 14 MPa peak stress. RESULTS: Confined compression moduli and Young's moduli were greater in elderly human femoral cartilage vs adult bovine humeral cartilage whereas hydraulic permeability was less. Radial deformations of axially compressed explant disks were more anisotropic (direction-dependent) for the human cartilage. In both cartilage sources, tissue cracking and associated cell death during injurious loading was common for 14 MPa peak stress at both strain rates. CONCLUSION: Despite differences in mechanical properties, acute damage induced by injurious loading was similar in both elderly human femoral cartilage and adult bovine humeral cartilage, supporting the clinical relevance of animal-based cartilage injury models. However, inherent structural differences such as cell density may influence subsequent cell-mediated responses to injurious loading and affect the development of OA.
Resumo:
Pterotaenia fasciata is commonly recorded in rural areas in Argentina, but during a Diptera survey study developed in a reservoir which retains storm water from polluted canals in an urban area of Taboão da Serra municipality, SP, Brazil, we could capture P. fasciata adults. Enteric bacteria Escherichia coli T. Escherich, 1885 and Proteus sp. were isolated from P. fasciata collected in traps inside the reservoir and around it. Fecal coliforms and E. coli were found in the water of the reservoir. These records suggest that a high abundance of this species at urban areas with inadequate sewage canals should reveal these muscoid dipterans as mechanical vectors of enteric bacteria.
Resumo:
L’archipel du Cap Vert constitué de 10 îles volcaniques appartient à la zone sahélienne qui s’étend de l’atlantique jusqu’à la mer rouge. Depuis, plusieurs décennies le Cap Vert est affecté par la désertification causée en grande partie par la récession climatique et l’érosion des sols. Ces facteurs, associés à la forte pression anthropique sur les ressources, à l’orographie accidentée et à des pluies tropicales parfois diluviennes, provoquent de sérieuses pertes du patrimoine foncier. Cependant, depuis son Indépendance en 1975, le Gouvernement a mené un vaste programme d’arborisation, de restauration des terres et d’aménagement des cours d’eau. Pourtant, très peu de recherches ont été menées pour évaluer les actions de protection et de conservation des sols et des eaux. Par conséquent, il n’existe quasiment pas de données sur la problématique de la dégradation des terres ni de bilans. Dans le cadre de ce travail, nous avons étudié les différents facteurs qui contrôlent l’érosion hydrique des sols. Nous avons plus particulièrement cherché à différencier les effets des activités humaines, notamment agricoles, de ceux des facteurs climatiques comme les précipitations et la génération des écoulements. Nous avons également établi les premiers bilans d’exportations de matières en suspension et en solution dans le contexte de l’archipel du Cap Vert. L’étude a été menée à l’échelle de trois bassins versants de l’ile de Santiago Cap-Vert. Ces trois bassins versant (Longueira, Grande et Godim) sont localisés dans la partie centrale de l’île de Santiago et représentatifs des divers modes d’occupation du sol et des différents climats de l’île. Il existe un gradient climatique entre les trois bassins versants. En effet, Longueira qui présente une superficie de 4,18 km2, une pente moyenne de 47 %, se localise dans une zone humide couverte à 69 % par une forêt et une surface agricole de 17 %. Grande avec une superficie de 1,87 km2, se localise en zone sub humide pour une pente moyenne de 50 %, il est essentiellement agricole. Godim, avec une superficie de 2,0 km2, se localise en zone semi aride, il est particulièrement agricole et sa pente moyenne est de 32 %. Pour ces trois bassins versants, les écoulements de crue à l’exutoire ont été mesurés et échantillonnés de 2004 à 2009. Le bassin versant de Longueira a fait l’objet d’un suivi plus poussé, notamment en termes de fréquence d’échantillonnage et de suivi des écoulements hors crue. Sur chaque échantillon nous avons procédé à la détermination de la concentration des matières en suspension ainsi qu’à l’analyse des éléments majeurs. Les résultats obtenus montrent que l’érosion mécanique dans les 3 bassins versants est caractérisée par une forte variabilité spatiale et temporelle. Sur la période 2005-2009, le bilan moyen annuel pour les bassins versants de Longueira, Grande et Godim est de : 4266, 157 et 10,1 t.km2.an-1 respectivement. La saison humide 2006 a été la plus érosive pour l’ensemble des trois bassins versants et particulièrement dans Longueira avec 2 crues exceptionnelles qui ont généré une concentration moyenne de matières en suspension supérieure à 100 g/l. En revanche, les saisons 2005 et 2008 ont été dans l’ensemble peu érosives car les concentrations moyennes ne dépassèrent pas 20 g/l. Par ailleurs, il n’y a pas eu de lames d’eau écoulées pour les saisons 2005 et 2007 pour le bassin de Godim. Sur le bassin de Longueira, l’étude des phénomènes d’hystérésis permet de caractériser chaque crue et de montrer que l’évolution temporelle des exportations de matières en suspension au cours de la saison est fortement influencée par les activités agricoles. En effet, la première crue provoque l’exportation massive des sédiments disponibles et localisés dans le lit du cours d’eau. En conséquence, la seconde est moins exportatrice de sédiments. Un mois après les premières pluies, les activités de sarclage diminuent la densité du couvert végétal et destructurent la partie superficielle des sols, ce qui provoque à nouveau une très forte exportation de sédiments lors de la troisième crue. Les résultats de l’érosion chimique sur le bassin de Longueira indiquent que le taux d’érosion chimique moyen s’élève à 45 t.km2.an-1 avec une forte variabilité temporelle. En effet, les saisons les plus humides de 2006 et 2007 sont les plus exportatrices de matières en solution, alors que 2005 a eu une faible exportation. L’utilisation du modèle de mélanges EMMA (End-Members Mixing Analysis) montre que les écoulements hypodermique et profond, qui alimentent le cours d’eau en éléments dissous, sont les principaux facteurs de l’érosion chimique. On montre ainsi que les écoulements hors crue sont à l’origine de plus de 90% des flux d’érosion chimique. L’écoulement superficiel, qui contribue à environ 70 % du débit du cours d’eau en crue, constitue un facteur de premier plan de l’érosion mécanique des sols.
Resumo:
Mechanical impedance of clayey and gravelly soils is often needed to interpret experimental results from tillage and other field experiments. Its measurement is difficult with manual and hydraulic penetrometers, which often bend or break in such soils. The purpose of this study was to evaluate the feasibility of a hand-operated "Stolf" impact penetrometer to measure mechanical impedance (soil resistance). The research was conducted in Raleigh, North Carolina, USA (35º 45'N, 78º 42'W, elevation 75 m). Corn was planted on April 19, 1991. Penetrometer measurements were taken on May 10, 1991, in 5 cm intervals to 60 cm at 33 locations on a transect perpendicular to the corn rows in each of four tillage treatments. The data permitted three-dimensional displays showing how mechanical impedance changed with depth and distance along the transect. The impact penetrometer proved to be a useful tool to collect quantitative mechanical impedance data on "hard" clayey and/or gravelly soils which previously were difficult to reliably quantify.
Resumo:
This paper compares two well known scan matching algorithms: the MbICP and the pIC. As a result of the study, it is proposed the MSISpIC, a probabilistic scan matching algorithm for the localization of an Autonomous Underwater Vehicle (AUV). The technique uses range scans gathered with a Mechanical Scanning Imaging Sonar (MSIS), and the robot displacement estimated through dead-reckoning with the help of a Doppler Velocity Log (DVL) and a Motion Reference Unit (MRU). The proposed method is an extension of the pIC algorithm. Its major contribution consists in: 1) using an EKF to estimate the local path traveled by the robot while grabbing the scan as well as its uncertainty and 2) proposing a method to group into a unique scan, with a convenient uncertainty model, all the data grabbed along the path described by the robot. The algorithm has been tested on an AUV guided along a 600m path within a marina environment with satisfactory results
Resumo:
Background: To evaluate outcomes after optimized laser in situ keratomileusis (LASIK) for astigmatism correction with flap created by a mechanical microkeratome or a femtosecond laser. Patients and Methods: In this retrospective study, a total of 102 eyes of 71 consecutive patients were enrolled undergoing optimized LASIK treatments using the Allegretto laser system (WaveLight Laser Technologie AG, Erlangen, Germany). A mechanical microkeratome for flap creation was used (One Use, Moria®) in 46 eyes (31 patients, spherical equivalent [SE] -4.44 D ± 2.4) and a femtosecond laser was used (LDV, Ziemer®) in 56 eyes (40 patients, spherical equivalent [SE] -3.07 D ± 3.3). The two groups were matched for inclusion criteria and were operated under similar conditions by the same surgeon. Results: Overall, the preoperative spherical equivalent was -9.5 diopters (D) to +3.37 D; the preoperative manifest astigmatism was between -1.5 D and -3.5 D. At 6 months postoperatively, the mean postoperative uncorrected distance visual acuity (UDVA) was 0.93 ± 0.17 (range 0.4 to 1.2) in the Moria group and 1.0 ± 0.21 (range 0.6 to 1.6) in the Femto group, which was statistically significant (p = 0.003). Comparing the cylinder power there was a statistical difference between the two groups (p = 0.0015). Conclusions: This study shows that the method of flap creation has a significant impact on postoperative astigmatism with a significantly better postoperative UDVA in the Femto group. These findings suggest that the femtosecond laser provides a better platform for LASIK treatment of astigmatism than the commonly used microkeratome.
Resumo:
Mortality of the acute respiratory distress syndrome (ARDS) remains extremely high and only few evidence-based specific treatments are currently available. Protective mechanical ventilation has emerged as the comer stone of the management of ARDS to avoid the occurrence of ventilation-induced lung injuries (VILI). Mechanical ventilation in the prone position has often been considered as a rescue therapy reserved to refractory hypoxemia. Since the publication of the PROSEVA study in 2013, early prone positioning for mechanical ventilation should be recommended to improve survival of patients with severe ARDS. In this article, both the theoretical and practical aspects of mechanical ventilation in prone position are reviewed.
Resumo:
We present a unified geometric framework for describing both the Lagrangian and Hamiltonian formalisms of regular and non-regular time-dependent mechanical systems, which is based on the approach of Skinner and Rusk (1983). The dynamical equations of motion and their compatibility and consistency are carefully studied, making clear that all the characteristics of the Lagrangian and the Hamiltonian formalisms are recovered in this formulation. As an example, it is studied a semidiscretization of the nonlinear wave equation proving the applicability of the proposed formalism.
Resumo:
BACKGROUND/AIM: Excitation-contraction coupling is modulated by nitric oxide (NO) which otherwise has either beneficial or detrimental effects on myocardial function during hypoxia-reoxygenation. This work aimed at characterizing the variations of electromechanical delay (EMD) induced by anoxia-reoxygenation within the developing heart and determining whether atrial and ventricular EMD are modulated by NO to the same extent. METHODS: Hearts of 4 or 4.5-day-old chick embryos were excised and submitted in vitro to normoxia (45 min), anoxia (30 min) and reoxygenation (60 min). Electrocardiogram and atrial and ventricular contractions were simultaneously recorded throughout experiment. Anoxia-reoxygenation-induced chrono-, dromo-and inotropic disturbances and changes in EMD in atrium (EMDa) and ventricle (EMDv) were investigated in control hearts and in hearts exposed to 0.1, 1, 10, 50 and 100 microM of DETA-NONOate (a NO donating agent) or to 50 microM of L-NAME (a NOS inhibitor). RESULTS: Under normoxia, heart rate, PR interval, ventricular shortening velocity, EMDa and EMDv were similar in control, L-NAME-treated and DETA-NONOate-treated hearts. Under anoxia, cardiac activity became markedly erratic within less than 10 min in all groups. At the onset of reoxygenation, EMDv was increased by about 300% with respect to the preanoxic value while EMDa did not vary significatively. Compared to control conditions, L-NAME or DETA-NONOate had no influence on the negative chrono-, dromo- and inotropic effects induced by anoxia-reoxygenation. However, L-NAME prolonged EMDv during anoxia and delayed EMDv recovery during reoxygenation while 100 microM DETA-NONOate had the opposite effects. EMDa was neither affected by NOS inhibitor nor NO donor. At the end of reoxygenation, all the investigated parameters returned to their basal values. CONCLUSION: This work provides evidence that a NO-dependent pathway is involved in regulation of the ventricular excitation-contraction coupling in the anoxic-reoxygenated developing heart.