987 resultados para Mandibular condyle
Resumo:
Continuous passive motion (CPM) is currently a part of patient rehabilitation regimens after a variety of orthopedic surgical procedures. While CPM can enhance the joint healing process, the direct effects of CPM on cartilage metabolism remain unknown. Recent in vivo and in vitro observations suggest that mechanical stimuli can regulate articular cartilage metabolism of proteoglycan 4 (PRG4), a putative lubricating and chondroprotective molecule found in synovial fluid and at the articular cartilage surface. ----- ----- Objectives: (1) Determine the topographical variation in intrinsic cartilage PRG4 secretion. (2) Apply a CPM device to whole joints in bioreactors and assess effects of CPM on PRG4 biosynthesis.----- ----- Methods: A bioreactor was developed to apply CPM to bovine stifle joints in vitro. Effects of 24 h of CPM on PRG4 biosynthesis were determined.----- ----- Results: PRG4 secretion rate varied markedly over the joint surface. Rehabilitative joint motion applied in the form of CPM regulated PRG4 biosynthesis, in a manner dependent on the duty cycle of cartilage sliding against opposing tissues. Specifically, in certain regions of the femoral condyle that were continuously or intermittently sliding against meniscus and tibial cartilage during CPM, chondrocyte PRG4 synthesis was higher with CPM than without.----- ----- Conclusions: Rehabilitative joint motion, applied in the form of CPM, stimulates chondrocyte PRG4 metabolism. The stimulation of PRG4 synthesis is one mechanism by which CPM may benefit cartilage and joint health in post-operative rehabilitation. (C) 2006 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Resumo:
The semiaquatic platypus and terrestrial echidnas (spiny anteaters) are the only living egg-laying mammals (monotremes). The fossil record has provided few clues as to their origins and the evolution of their ecological specializations; however, recent reassignment of the Early Cretaceous Teinolophos and Steropodon to the platypus lineage implies that platypuses and echidnas diverged >112.5 million years ago, reinforcing the notion of monotremes as living fossils. This placement is based primarily on characters related to a single feature, the enlarged mandibular canal, which supplies blood vessels and dense electrosensory receptors to the platypus bill. Our reevaluation of the morphological data instead groups platypus and echidnas to the exclusion of Teinolophos and Steropodon and suggests that an enlarged mandibular canal is ancestral for monotremes (partly reversed in echidnas, in association with general mandibular reduction). A multigene evaluation of the echidna–platypus divergence using both a relaxed molecular clock and direct fossil calibrations reveals a recent split of 19–48 million years ago. Platypus-like monotremes (Monotrematum) predate this divergence, indicating that echidnas had aquatically foraging ancestors that reinvaded terrestrial ecosystems. This ecological shift and the associated radiation of echidnas represent a recent expansion of niche space despite potential competition from marsupials. Monotremes might have survived the invasion of marsupials into Australasia by exploiting ecological niches in which marsupials are restricted by their reproductive mode. Morphology, ecology, and molecular biology together indicate that Teinolophos and Steropodon are basal monotremes rather than platypus relatives, and that living monotremes are a relatively recent radiation.
Resumo:
Background: The incidence of mandibular fractures in the Northern Territory of Australia is very high, especially among Indigenous people. Alcohol intoxication is implicated in the majority of facial injuries, and substance use is therefore an important target for secondary prevention. The current study tests the efficacy of a brief therapy, Motivational Care Planning, in improving wellbeing and substance misuse in youth and adults hospitalised with alcohol-related facial trauma. Methods and design: The study is a randomised controlled trial with 6 months of follow-up, to examine the effectiveness of a brief and culturally adapted intervention in improving outcomes for trauma patients with at-risk drinking admitted to the Royal Darwin Hospital maxillofacial surgery unit. Potential participants are identified using AUDIT-C questionnaire. Eligible participants are randomised to either Motivational Care Planning (MCP) or Treatment as Usual (TAU). The outcome measures will include quantity and frequency of alcohol and other substance use by Timeline Followback. The recruitment target is 154 participants, which with 20% dropout, is hoped to provide 124 people receiving treatment and follow-up. Discussion: This project introduces screening and brief interventions for high-risk drinkers admitted to the hospital with facial trauma. It introduces a practical approach to integrating brief interventions in the hospital setting, and has potential to demonstrate significant benefits for at-risk drinkers with facial trauma.
Resumo:
This thesis explored the different bone-forming potential of specific bone cells with differing embryological origin, on conventional culture platforms compared to 3D biocompatible scaffolds in vitro. Bone mesenchymal stem cells, mandibular osteoblasts and long bone osteoblasts from adult and juvenile sheep were compared in the study, as the embryological origin of the osteoblasts from the craniofacial and appendicular skeleton differs. The study demonstrated differing characteristics of the various cell types when cultured on the two different platforms compared and this may have an impact on future research into cell seeded tissue scaffolds to aid in vivo tissue regeneration.
Resumo:
The effects of estrogen deficiency on bone characteristics are site-dependent, with the most commonly studied sites being appendicular long bones (proximal femur and tibia) and axial bones (vertebra). The effect on the maxillary and mandibular bones is still inconsistent and requires further investigation. This study was designed to evaluate bone quality in the posterior maxilla of ovariectomized rats in order to validate this site as an appropriate model to study the effect of osteoporotic changes. Methods: Forty-eight 3-month-old female Sprague-Dawley rats were randomly divided into two groups: an ovariectomized group (OVX, n=24) and Sham-operated group (SHAM, n=24). Six rats were randomly sacrificed from both groups at time points 8, 12, 16 and 20 weeks. The samples from tibia and maxilla were collected for Micro CT and histological analysis. For the maxilla, the volume of interest (VOI) area focused on the furcation areas of the first and second molar. Trabecular bone volume fraction (BV/TV, %), trabecular thickness (Tb.Th.), trabecular number (Tb.N.), trabecular separation (Tb.Sp.), and connectivity density (Conn.Dens) were analysed after Micro CT scanning. Results: At 8 weeks the indices BV/TV, Tb.Sp, Tb.N and Conn.Dens showed significant differences (P<0.05) between the OVX and SHAM groups in the tibia. Compared with the tibia, the maxilla developed osteoporosis at a later stage, with significant changes in maxillary bone density only occurring after 12 weeks. Compared with the SHAM group, both the first and second molars of the OVX group showed significantly decreased BV/TV values from 12 weeks, and these changes were sustained through 16 and 20 weeks. For Tb.Sp, there were significant increases in bone values for the OVX group compared with the SHAM group at 12, 16 and 20 weeks. Histological changes were highly consistent with Micro CT results. Conclusion: This study established a method to quantify the changes of intra-radicular alveolar bone in the posterior maxilla in an accepted rat osteoporosis model. The degree of the osteoporotic changes to trabecular bone architecture is site-dependent and at least 3 months are required for the osteoporotic effects to be apparent in the posterior maxilla following rat OVX.
Resumo:
Osteoblast lineage cells are direct effectors of osteogenesis and are, therefore, commonly used to evaluate the in vitro osteogenic capacity of bone substitute materials. This method has served its purposes when testing novel bone biomaterials; however, inconsistent results between in vitro and in vivo studies suggest the mechanisms that govern a material's capacity to mediate osteogenesis are not well understood. The emerging field of osteoimmunology and immunomodulation has informed a paradigm shift in our view of bone biomaterials–from one of an inert to an osteoimmunomodulatory material–highlighting the importance of immune cells in materials-mediated osteogenesis. Neglecting the importance of the immune response during this process is a major shortcoming of the current evaluation protocol. In this study we evaluated a potential angiogenic bone substitute material cobalt incorporated with β-tricalcium phosphate (CCP), comparing the traditional “one cell type” approach with a “multiple cell types” approach to assess osteogenesis, the latter including the use of immune cells. We found that CCP extract by itself was sufficient to enhance osteogenic differentiation of bone marrow stem cells (BMSCs), whereas this effect was cancelled out when macrophages were involved. In response to CCP, the macrophage phenotype switched to the M1 extreme, releasing pro-inflammatory cytokines and bone catabolic factors. When the CCP materials were implanted into a rat femur condyle defect model, there was a significant increase of inflammatory markers and bone destruction, coupled with fibrous encapsulation rather than new bone formation. These findings demonstrated that the inclusion of immune cells (macrophages) in the in vitro assessment matched the in vivo tissue response, and that this method provides a more accurate indication of the essential role of immune cells when assessing materials-stimulated osteogenesis in vitro.
Resumo:
The volatile components of the mandibular gland secretion generated by the Giant Ichneumon parasitoid wasp Megarhyssa nortoni nortoni Cresson are mainly spiroacetals and methyl ketones, and all have an odd number of carbon atoms. A biosynthetic scheme rationalizing the formation of these diverse components is presented. This scheme is based on the results of incorporation studies using 2H-labeled precursors and [18O]dioxygen. The key steps are postulated to be decarboxylation of β-ketoacid equivalents, β-oxidation (chain shortening), and monooxygenase-mediated hydroxylation leading to a putative ketodiol that cyclizes to spiroacetals. The generality of the role of monooxygenases in spiroacetal formation in insects is considered, and overall, a cohesive, internally consistent theory of spiroacetal generation by insects is presented, against which future hypotheses will have to be compared.
Resumo:
In crustaceans, a range of physiological processes involved in ovarian maturation occurs in organs of the cephalothorax including the hepatopancrease, mandibular and Y-organ. Additionally, reproduction is regulated by neuropeptide hormones and other proteins released from secretory sites within the eyestalk. Reproductive dysfunction in captive-reared prawns, Penaeus monodon, is believed to be due to deficiencies in these factors. In this study, we investigated the expression of gene transcripts in the cephalothorax and eyestalk from wild-caught and captive-reared animals throughout ovarian maturation using custom oligonucleotide microarray screening. We have isolated numerous transcripts that appear to be differentially expressed throughout ovarian maturation and between wild-caught and captive-reared animals. In the cephalothorax, differentially expressed genes included the 1,3-beta-D-glucan-binding high-density lipoprotein, 2/3-oxoacyl-CoA thiolase and vitellogenin. In the eyestalk, these include gene transcripts that encode a protein that modulates G-protein coupled receptor activity and another that encodes an architectural transcription factor. Each may regulate the expression of reproductive neuropeptides, such as the crustacean hyperglycaemic hormone and molt-inhibiting hormone. We could not identify differentially expressed transcripts encoding known reproductive neuropeptides in the eyestalk of either wild-caught or captive-reared prawns at any ovarian maturation stage, however, this result may be attributed to low relative expression levels of these transcripts. In summary, this study provides a foundation for the study of target genes involved in regulating penaeid reproduction.
Resumo:
Ambrosia beetle fungiculture represents one of the most ecologically and evolutionarily successful symbioses, as evidenced by the 11 independent origins and 3500 species of ambrosia beetles. Here we document the evolution of a clade within Fusarium associated with ambrosia beetles in the genus Euwallacea (Coleoptera: Scolytinae). Ambrosia Fusarium Clade (AFC) symbionts are unusual in that some are plant pathogens that cause significant damage in naive natural and cultivated ecosystems, and currently threaten avocado production in the United States, Israel and Australia. Most AFC fusaria produce unusual clavate macroconidia that serve as a putative food source for their insect mutualists. AFC symbionts were abundant in the heads of four Euwallacea spp., which suggests that they are transported within and from the natal gallery in mandibular mycangia. In a four-locus phylogenetic analysis, the AFC was resolved in a strongly supported monophyletic group within the previously described Cade 3 of the Fusarium solani species complex (FSSC). Divergence-time estimates place the origin of the AFC in the early Miocene similar to 21.2 Mya, which coincides with the hypothesized adaptive radiation of the Xyleborini. Two strongly supported clades within the AFC (Clades A and B) were identified that include nine species lineages associated with ambrosia beetles, eight with Euwallacea spp. and one reportedly with Xyleborus ferrugineus, and two lineages with no known beetle association. More derived lineages within the AFC showed fixation of the clavate (club-shaped) macroconidial trait, while basal lineages showed a mix of clavate and more typical fusiform macroconidia. AFC lineages consisted mostly of genetically identical individuals associated with specific insect hosts in defined geographic locations, with at least three interspecific hybridization events inferred based on discordant placement in individual gene genealogies and detection of recombinant loci. Overall, these data are consistent with a strong evolutionary trend toward obligate symbiosis coupled with secondary contact and interspecific hybridization. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
The aim of the present experimental study was to find out if the applications of coralline hydroxyapatite (HA) can be improved by using bioabsorbable containment or binding substance with particulate HA in mandibular contour augmentation and by using bioabsorbable fibre-reinforced HA blocks in filling bone defects and in anterior lumbar interbody fusion. The use of a separate curved polyglycolide (PGA) containment alone or together with a fast resorbing polyglycolide/polylactide (PGA/PLA) binding substance were compared to the conventional non-contained method in ridge augmentation in sheep. The contained methods decreased HA migration, but the augmentations did not differ significantly. The use of the containment caused a risk for wound dehiscence and infection. Histologically there was a rapid connective tissue ingrowth into the HA graft and it was more abundant with the PGA containment compared to the non-contained augmentation and even additionally rich when the HA particles were bound with PGA/PLA copolymer. However, the bone ingrowth was best in the non-contained augmentation exceeding 10-12 % of the total graft area at 24 weeks. Negligible or no bone ingrowth was seen in the cases where the polymer composite was added to the HA particles and, related to that, foreign-body type cells were seen at the interface between the HA and host bone. The PGA and poly-dl/l-lactide (PDLLA) fibre-reinforced coralline HA blocks were studied in the metaphyseal and in the diaphyseal defects in rabbits. A rapid bone ingrowth was seen inside the both types of implants. Both PGA and PDLLA fibres induced an inflammatory fibrous reaction around themselves but it did not hinder the bone ingrowth. The bone ingrowth pattern was directed according to the loading conditions so that the load-carrying cortical ends of the implants as well as the implants sited in the diaphyseal defects were the most ossified. The fibre-reinforced coralline HA implants were further studied as stand-alone grafts in the lumbar anterior interbody implantation in pigs. The strength of the HA implants proved not to be adequate, the implants fractured in six weeks and the disc space was gradually lost similarly to that of the discectomized spaces. Histologically, small quantities of bone ingrowth was seen in some of the PGA and PDLLA reinforced coralline implants while no bone formation was identified in any of the PDLLA reinforced synthetic porous HA implants. While fragmented, the inner structure of the implants was lost, the bone ingrowth was minimal, and the disc was replaced by the fibrous connective tissue. When evaluated radiologically the grade of ossification was assessed as better than histologically, and, when related to the histologic findings, CT was more dependable than the plain films to show ossification of the implanted disc space. Local kyphosis was a frequent finding along with anterior bone bridging and ligament ossification as a consequence of instability of the implanted segment.
Resumo:
The purpose of this series of studies was to evaluate the biocompatibility of poly (ortho) ester (POE), copolymer of ε-caprolactone and D,L-lactide [P (ε-CL/DL-LA)] and the composite of P(ε-CL/DL-LA) and tricalciumphosphate (TCP) as bone filling material in bone defects. Tissue reactions and resorption times of two solid POE-implants (POE 140 and POE 46) with different methods of sterilization (gamma- and ethylene oxide sterilization), P(ε-CL/DL-LA)(40/60 w/w) in paste form and 50/50 w/w composite of 40/60 w/w P(ε-CL/DL-LA) and TCP and 27/73 w/w composite of 60/40 w/w P(ε-CL/DL-LA) and TCP were examined in experimental animals. The follow-up times were from one week to 52 weeks. The bone samples were evaluated histologically and the soft tissue samples histologically, immunohistochemically and electronmicroscopically. The results showed that the resorption time of gamma sterilized POE 140 was eight weeks and ethylene oxide sterilized POE 140 13 weeks in bone. The resorption time of POE 46 was more than 24 weeks. The gamma sterilized rods started to erode from the surface faster than ethylene oxide sterilized rods for both POEs. Inflammation in bone was from slight to moderate with POE 140 and moderate with POE 46. No highly fluorescent layer of tenascin or fibronectin was found in the soft tissue. Bone healing at the sites of implantation was slower than at control sites with the copolymer in small bone defects. The resorption time for the copolymer was over one year. Inflammation in bone was mostly moderate. Bone healing at the sites of implantation was also slower than at the control sites with the composite in small and large mandibular bone defects. Bone formation had ceased at both sites by the end of follow-up in large mandibular bone defects. The ultrastructure of the connective tissue was normal during the period of observation. It can be concluded that the method of sterilization influenced the resorption time of both POEs. Gamma sterilized POE 140 could have been suitable material for filling small bone defects, whereas the degradation times of solid EO-sterilized POE 140 and POE 46 were too slow to be considered as bone filling material. Solid material is difficult to contour, which can be considered as a disadvantage. The composites were excellent to handle, but the degradation time of the polymer and the composites were too slow. Therefore, the copolymer and the composite can not be recommended as bone filling material.
Resumo:
Dioxins are organic toxicants that are known to impair tooth development, especially dental hard tissue formation. The most toxic dioxin congener is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Further, clinical studies suggest that maternal smoking during pregnancy can affect child s tooth development. One of the main components of tobacco smoke is the group of non-halogenated polycyclic aromatic hydrocarbons (PAHs), a representative of which is 7,12-dimethylbenz[a]anthracene (DMBA). Tributyltin (TBT), an organic tin compound, has been shown to impair bone mineralization in experimental animals. In addition to exposure to organic toxicants, a well-established cause for enamel hypomineralization is excess fluoride intake. The principal aim of this thesis project was to examine in vitro if, in addition to dioxins, other organic environmental toxicants, like PAHs and organic tin compounds, have adverse effects on tooth development, specifically on formation and mineralization of the major dental hard tissues, the dentin and the enamel. The second aim was to investigate in vitro if fluoride could intensify the manifestation of the detrimental developmental dental effects elicited by TCDD. The study was conducted by culturing mandibular first and second molar tooth germs of E18 NMRI mouse embryos in a Trowell-type organ culture and exposing them to DMBA, TBT, and sodium fluoride (NaF) and/or TCDD at various concentrations during the secretory and mineralization stages of development. Specific methods used were HE-staining for studying cell and tissue morphology, BrdU-staining for cell proliferation, TUNEL-staining for apoptosis, and QPCR, in situ hybridization and immunohistochemistry for the expressions of selected genes associated with mineralization. This thesis work showed that DMBA, TBT, TCDD and NaF interfere with dentin and enamel formation of embryonic mouse tooth in vitro, and that fluoride can potentiate the harmful effect of TCDD. The results suggested that adverse effects of TBT involve altered expression of genes associated with mineralization, and that DMBA and TBT as well as NaF and TCDD together primarily affect dentin mineralization. Since amelogenesis does not start until mineralization of dentin begins, impaired enamel matrix secretion could be a secondary effect. Dioxins, PAHs and organotins are all liposoluble and can be transferred to the infant by breast-feeding. Since doses are usually very low, developmental toxicity on most of the organs is difficult to indentify clinically. However, tooth may act as an indicator of exposure, since the major dental hard tissues, the dentin and the enamel, are not replaced once they have been formed. Thus, disturbed dental hard tissue formation raises the question of more extensive developmental toxicity.
Resumo:
182 p. : il.
Resumo:
Os implantes osteointegráveis assumiram condição prioritária na reabilitação da perda dentária unitária ou múltipla em função das elevadas taxas de sucesso e previsibilidade no tratamento e vêm sendo cada vez mais utilizados por especialistas e clínicos. Atualmente existe a preocupação com a manutenção dos tecidos moles periimplantares, principalmente em áreas estéticas. De modo geral, um ano após a instalação dos implantes osteointegráveis ocorre uma perda óssea proximal de 1,5 mm e em média 0,1 mm durante os anos subsequentes. Nos últimos anos, achados clínicos evidenciaram menor perda óssea inicial associada a intermediários de diâmetro reduzido em relação à plataforma dos implantes. Com o objetivo de comparar, por meio de imagens radiográficas o comportamento ósseo proximal ao redor de implantes osteointegráveis com plataformas convencionais e plataformas de diâmetro intermediário reduzido, foi estabelecido o seguinte desenho de estudo clínico prospectivo: em 08 pacientes totalmente edentados, foram instalados 40 implantes, 5 implantes mandibulares por paciente. Cada paciente recebeu 3 implantes com plataforma convencional e 2 com plataforma associada aos intermediários de diâmetro reduzido (cone morse). Foram confeccionadas próteses em resina acrílica e fixadas precocemente aos implantes por intermédio de parafusos, seguindo o modelo protocolo Bränemark. Foram feitas radiografias periapicais padronizadas em intervalos de 21 dias, 3, 6 e 12 meses, após a instalação dos implantes. As imagens radiográficas foram digitalizadas e realizada a subtração radiográfica digital pelo programa emago, sendo comparadas com a radiografia inicial. Os resultados obtidos neste estudo mostraram uma regularidade no remodelamento ósseo ao longo do tempo para todos os implantes, não tendo sido encontradas diferenças significativas entre os diferentes implantes analisados.
Resumo:
O objetivo deste trabalho é analisar in vitro a dissipação de tensões em incisivos centrais superiores humanos restaurados com facetas de cerâmica feldspática, através da análise do método dos elementos finitos, considerando cargas funcionais de mastigação e corte dos alimentos, em função de três tipos de preparos utilizados: sem proteção incisal; com proteção incisal em ângulo e com proteção incisal em degrau palatino. Foram utilizadas modelagens bidimensionais de um incisivo central superior e suas estruturas de suporte, simulando três situações: (Primeira modelagem) incisivo central superior com desgaste vestibular (em forma de janela); (Segunda modelagem) incisivo central superior com desgaste vestibular e proteção incisal em plano inclinado; (Terceira modelagem) incisivo central superior com desgaste vestibular, e proteção incisal com degrau palatino. Foi considerada uma carga (P=100N) com uma inclinação de 45 concentrada, simulando a região de contato do incisivo central inferior com o superior durante a mastigação e uma na região de contato topo a topo dos incisivos superior e inferior, simulando o corte dos alimentos. Após a análise dos dados obtidos pela distribuição de tensões, pode-se concluir que quanto à dissipação das tensões em todo o sistema proposto, com a aplicação de carga em 45, não foram observadas mudanças no estado tensional nos três diferentes preparos. Quando foi aplicada carga vertical, simulando o contato de topo, houve variação no estado tensional no sistema do dente com preparo em janela. Nas facetas, com a aplicação de carga em 45, nos preparos em janela e com proteção incisal em plano inclinado o resultado foi semelhante nos valores tensionais enquanto, nas facetas em dentes preparados com proteção incisal com degrau palatino, a distribuição foi mais homogênea tendo valores superiores, mostrando que o abraçamento do dente diminuiu a flexão.