959 resultados para MATERIALS SCIENCE - Radiation Effects
Resumo:
Thin films of chemically synthesized polyaniline and poly(o-methoxyaniline) were exposed to ionizing X-ray radiation and characterized by radiation induced conductivity measurements, ultraviolet-visible spectroscopy, electron paramagnetic resonance, electrical conductivity and solubility measurements. Samples irradiated in vacuum or dry Oxygen atmosphere did not have their electronic spectra changed. However, under humid atmosphere the energy of the excitonic transition was decreased and accompanied by a great conductivity increase. The results indicate that doping of polyaniline can be induced by X-ray radiation which might be of great interest for applications on lithography and microelectronics.
Resumo:
Starting from aqueous colloidal suspensions, undoped and Nb5+ doped SnO2 thin films have been prepared by using the dip-coating sol gel process. X-ray diffraction results show that films are polycrystalline with crystallites of average size1-4nm. Decreasing the thickness of the films and increasing the Nb5+ concentration limits the crystallite size growth during firing. Complex impedance measurements reveal capacitive and resistive effects between adjacent crystallites or grains, characteristic of electrical potential barriers. The transfer of charge throughout these barriers determines the macroscopic electrical resistance of the layer. The analysis of the optical absorption spectra shows that the samples present more than 80% of their transmittance in the visible region and the value of the band gap energy increases with decreasing crystallite size. © 1997 Chapman & Hall.
Resumo:
The influence of silver additions on the structure and phase transformation of the Cu-13 wt % Al alloy was studied by differential thermal analysis, X-ray diffraction, scanning electron microscopy and energy dispersive analysis of X-rays. The results indicate that the presence of silver modifies the phase-stability field, the transition temperature and the structure of the alloy. These effects are more pronounced for silver concentrations up to 8 wt %.
Resumo:
The non-linear electrical properties of CoO-doped and Nb205-doped SnO2 ceramics were characterized. X-ray diffraction and scanning electron microscopy indicated that the system is single phase. The electrical conduction mechanism for low applied electrical field was associated with thermionic emission of the Schottky type. An atomic defect model based on the Schottky double-barrier formation was proposed to explain the origin of the potential barrier at the ceramic grain boundaries. These defects create depletion layers at grain boundaries, favouring electron tunnelling at high values of applied electrical field. © 1998 Chapman & Hall.
Resumo:
Tin oxide is an n-type semiconductor material with a high covalent behavior. Mass transport in this oxide depends on the surface state promoted by atmosphere or by the solid solution of a non-isovalent oxide doping The sintering and grain growth of this type of oxide powder is then controlled by atmosphere and by extrinsic oxygen vacancy formation. For pure SnO2 powder the surface state depends only on the interaction of atmosphere molecules with the SnO2 surface. Inert atmosphere like argon or helium promotes oxygen vacancy formation at the surface due to reduction of SnO2 to SnO at the surface and liberation of oxygen molecules forming oxygen vacancies. As consequence surface diffusion is enhanced leading to grain coarsening but no densification. Oxygen atmosphere inhibits the SnO2 reduction decreasing the surface oxygen vacancy concentration. Addition of dopants with lower valence at sintering temperature creates extrinsic charged oxygen vacancies that promote mass transport at grain boundary leading to densification and grain growth of this polycrystalline oxide.
Resumo:
The present work reports the study of KCl thin films doped with In+ or Tl+. Both systems show optical absorption bands similar to single crystals. As the impurity concentration increases, so does the absorption as also the half band width, unlike in KCl: Cu+ films. Further experimental techniques such as X-ray diffraction, scanning electron micrographs and energy dispersive X-ray observations were used and comparative analysis with KCl : Cu+ films reveals new conditions for better crystallinity of the samples.
Resumo:
Since oxygen vacancies act as donors in SnO2, the electrical properties are related to deviation from stoichiometric composition. Depending on stoichiometry SnO2 can be highly insulating or may exhibit fairly high n-type conductivity. Since bandgap transitions are in the ultraviolet range, its photoconductivity is strongly dependent on the excitation source. We have measured variation of photoconductivity excitation with wavelength for tin dioxide grown by dip-coating sol-gel technique using several light sources: tungsten lamp, xenon, mercury and deuterium, and present selected results. The main band is obtained in the range 3-4eV according to light source spectrum in the ultraviolet range. The presence of oxygen in the cryostat also affects the spectrum since electron-hole pairs react with adsorbed oxygen specimens. © 1999 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.
Resumo:
Room-temperature photoluminescence (PL) was observed in undoped and 2 mol% Cr-, Al- and Y-doped amorphous SrTiO3 thin films. Doping increased the PL, and in the case of Cr significantly reduced the associated PL wavelength. The optical bandgaps, calculated by means of UV-vis absorption spectra, increased with crystallinity and decreased with the doping level. It was considered that yttrium and aluminum substituted Sr2+, whereas chromium replaced Ti4+. It is believed that luminescence centers are oxygen-deficient BO6 complexes, or the same centers with some other defects, such as oxygen or strontium vacancies, or BO6 complexes with some other defects placed in their neighborhood. The character of excitation and the competition for negatively charged non-bridging oxygen (NBO) among numerous types of BO6 defect complexes in doped SrTiO3 results in various broadband luminescence peak positions. The results herein reported are an indicative that amorphous titanates are sensitive to doping, which is important for the control of the electro-optic properties of these materials. The probable incorporation of Cr into the Ti site suggests that the existence of a double network former can lead to materials displaying a more intense photoluminescence.
Resumo:
A very simple and robust method for ceramics grains quantitative image analysis is presented. Based on the use of optimal imaging conditions for reflective light microscopy of bulk samples, a digital image processing routine was developed for shading correction, noise suppressing and contours enhancement. Image analysis was done for grains selected according to their concavities, evaluated by perimeter ratio shape factor, to avoid consider the effects of breakouts and ghost boundaries due to ceramographic preparation limitations. As an example, the method was applied for two ceramics, to compare grain size and morphology distributions. In this case, most of artefacts introduced by ceramographic preparation could be discarded due to the use of perimeter ratio exclusion range.
Resumo:
PMN powder samples with PbO excess of 0, 1,2 and 3% were submitted to the pressing and sintering at 1200°C for 4h with a heating rate of 3°C/min. A new sintering system, developed at our laboratories, was used. It allows obtaining more information on the sintering process. The sintered samples in the new system were compared to sintered samples in the C system. The microstructure, dielectric properties and the effect of the PbO excess in different sintering systems were compared. The N system permitted to obtain a ceramic with better properties, such density, dielectric constant and very homogeneous microstructure.
Resumo:
Nylon6/ABS binary blends are incompatible and need to be compatibilized to achieve better performance under impact tests. Poly(methyl methacrylate/maleic anhydride) (MMA-MA) is used in this work to compatibilize in situ nylon6/ABS immiscible blends. The MA functional groups, from MMA-MA copolymers, react with NH2 groups giving as products nylon molecules grafted to MMA-MA molecules. Those molecular species locate in the nylon6/ABS blend interfacial region increasing the local adhesion. MMA-MA segments are completely miscible with the SAN rich phase from the ABS. The aim of this work is to study the effects of ABS and compatibilizing agent on the melting and crystallization of nylon6/ABS blends. This effect has been investigated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Incorporation of this compatibilizer and ABS showed little effect on the melting behavior of the PA6 crystalline phase, in general. DMTA analysis confirmed the system immiscibility and showed evidence of compatibility between the two phases, nylon6 and ABS, produced by MMA-MA copolymer presence. The nylon6/ABS blend morphology, observed by transmission electron microscopy (TEM), changes significantly by the addition of the MMA-MA compatibilizer. A better dispersion of ABS in the nylon6 phase is observed. © 2004 Kluwer Academic Publishers.
Resumo:
Since the discovery of the high Tc superconductors, several works have been made about the different properties of these materials. Anelastic spectroscopy experiments are sensitive tools to the study of defects in solids and phase transitions. By this technique, we can distinguish the different types of atomic jumps that happen to different temperatures. The intensity of the peaks in the anelastic spectrum and the step in the torsional modulus are related with the concentration of the relaxing entities, and the position of the peaks is determined by its mobility. In this paper, the study on Bi and Sm based superconducting oxides was made by anelastic relaxation measurements using a torsion pendulum. The samples were submitted to successive thermal treatments in high vacuum, in the temperature range between 100 K and 650 K, heating rate about 1 K/min. For Bi based superconducting oxides the results shown two peaks, that were associated to interstitial oxygen mobility and to orthorhombic to monoclinic phase transition. For Sm based superconducting oxides the results shown a relaxation peak that was attributed to the jumps of the oxygen atoms in the inter-chains O1 and 05 of the lattice.
Resumo:
The complex perovskite compound 0.9PbMg 1/3Nb 2/3O 3-0.1PbTiO 3 is one of the most promising relaxor ceramic because the addition of lead titanate increases T m, by about 5°C/mol% from intrinsic T m value for pure PMN (near -7 to -15°C). A Ti-modified columbite precursor was used to prepare PMN-PT powders containing single perovskite phase. This variation on columbite route includes Ti insertion in MgNb 2O 6 orthorhombic structure so that individual PT synthesis becomes unnecessary. Furthermore, effects of Li additive on columbite and PMN-PT structures were studied by XRD to verify the phase formation at each processing step. XRD data were also used for the structural refinement by Rietveld method. The additive acts increasing columbite powders crystallinity, and the amount of perovskite phase was insignificantly decreased by lithium addition. By SEM micrographs it was observed that Li presence in PMN-PT powders leads to the formation of rounded primary particles and for lmol% of additive, the grain size is not changed, different from when this concentration is enhanced to 2mol%.