823 resultados para Links and link-motion.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents MOTION, a modular on-line model for urban traffic signal control. It consists of a network and a local level and builds on enhanced traffic state estimation. Special consideration is given to the prioritization of public transit. MOTION provides possibilities for the interaction with integrated urban management systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite record-setting performance demonstrated by superconducting Transition Edge Sensors (TESs) and growing utilization of the technology, a theoretical model of the physics governing TES devices superconducting phase transition has proven elusive. Earlier attempts to describe TESs assumed them to be uniform superconductors. Sadleir et al. 2010 shows that TESs are weak links and that the superconducting order parameter strength has significant spatial variation. Measurements are presented of the temperature T and magnetic field B dependence of the critical current Ic measured over 7 orders of magnitude on square Mo/Au bilayers ranging in length from 8 to 290 microns. We find our measurements have a natural explanation in terms of a spatially varying order parameter that is enhanced in proximity to the higher transition temperature superconducting leads (the longitudinal proximity effect) and suppressed in proximity to the added normal metal structures (the lateral inverse proximity effect). These in-plane proximity effects and scaling relations are observed over unprecedentedly long lengths (in excess of 1000 times the mean free path) and explained in terms of a Ginzburg-Landau model. Our low temperature Ic(B) measurements are found to agree with a general derivation of a superconducting strip with an edge or geometric barrier to vortex entry and we also derive two conditions that lead to Ic rectification. At high temperatures the Ic(B) exhibits distinct Josephson effect behavior over long length scales and following functional dependences not previously reported. We also investigate how film stress changes the transition, explain some transition features in terms of a nonequilibrium superconductivity effect, and show that our measurements of the resistive transition are not consistent with a percolating resistor network model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human and robots have complementary strengths in performing assembly operations. Humans are very good at perception tasks in unstructured environments. They are able to recognize and locate a part from a box of miscellaneous parts. They are also very good at complex manipulation in tight spaces. The sensory characteristics of the humans, motor abilities, knowledge and skills give the humans the ability to react to unexpected situations and resolve problems quickly. In contrast, robots are very good at pick and place operations and highly repeatable in placement tasks. Robots can perform tasks at high speeds and still maintain precision in their operations. Robots can also operate for long periods of times. Robots are also very good at applying high forces and torques. Typically, robots are used in mass production. Small batch and custom production operations predominantly use manual labor. The high labor cost is making it difficult for small and medium manufacturers to remain cost competitive in high wage markets. These manufactures are mainly involved in small batch and custom production. They need to find a way to reduce the labor cost in assembly operations. Purely robotic cells will not be able to provide them the necessary flexibility. Creating hybrid cells where humans and robots can collaborate in close physical proximities is a potential solution. The underlying idea behind such cells is to decompose assembly operations into tasks such that humans and robots can collaborate by performing sub-tasks that are suitable for them. Realizing hybrid cells that enable effective human and robot collaboration is challenging. This dissertation addresses the following three computational issues involved in developing and utilizing hybrid assembly cells: - We should be able to automatically generate plans to operate hybrid assembly cells to ensure efficient cell operation. This requires generating feasible assembly sequences and instructions for robots and human operators, respectively. Automated planning poses the following two challenges. First, generating operation plans for complex assemblies is challenging. The complexity can come due to the combinatorial explosion caused by the size of the assembly or the complex paths needed to perform the assembly. Second, generating feasible plans requires accounting for robot and human motion constraints. The first objective of the dissertation is to develop the underlying computational foundations for automatically generating plans for the operation of hybrid cells. It addresses both assembly complexity and motion constraints issues. - The collaboration between humans and robots in the assembly cell will only be practical if human safety can be ensured during the assembly tasks that require collaboration between humans and robots. The second objective of the dissertation is to evaluate different options for real-time monitoring of the state of human operator with respect to the robot and develop strategies for taking appropriate measures to ensure human safety when the planned move by the robot may compromise the safety of the human operator. In order to be competitive in the market, the developed solution will have to include considerations about cost without significantly compromising quality. - In the envisioned hybrid cell, we will be relying on human operators to bring the part into the cell. If the human operator makes an error in selecting the part or fails to place it correctly, the robot will be unable to correctly perform the task assigned to it. If the error goes undetected, it can lead to a defective product and inefficiencies in the cell operation. The reason for human error can be either confusion due to poor quality instructions or human operator not paying adequate attention to the instructions. In order to ensure smooth and error-free operation of the cell, we will need to monitor the state of the assembly operations in the cell. The third objective of the dissertation is to identify and track parts in the cell and automatically generate instructions for taking corrective actions if a human operator deviates from the selected plan. Potential corrective actions may involve re-planning if it is possible to continue assembly from the current state. Corrective actions may also involve issuing warning and generating instructions to undo the current task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liquid-solid interactions become important as dimensions approach mciro/nano-scale. This dissertation focuses on liquid-solid interactions in two distinct applications: capillary driven self-assembly of thin foils into 3D structures, and droplet wetting of hydrophobic micropatterned surfaces. The phenomenon of self-assembly of complex structures is common in biological systems. Examples include self-assembly of proteins into macromolecular structures and self-assembly of lipid bilayer membranes. The principles governing this phenomenon have been applied to induce self-assembly of millimeter scale Si thin films into spherical and other 3D structures, which are then integrated into light-trapping photovoltaic (PV) devices. Motivated by this application, we present a generalized analytical study of the self-folding of thin plates into deterministic 3D shapes, through fluid-solid interactions, to be used as PV devices. This study consists of developing a model using beam theory, which incorporates the two competing components — a capillary force that promotes folding and the bending rigidity of the foil that resists folding into a 3D structure. Through an equivalence argument of thin foils of different geometry, an effective folding parameter, which uniquely characterizes the driving force for folding, has been identified. A criterion for spontaneous folding of an arbitrarily shaped 2D foil, based on the effective folding parameter, is thus established. Measurements from experiments using different materials and predictions from the model match well, validating the assumptions used in the analysis. As an alternative to the mechanics model approach, the minimization of the total free energy is employed to investigate the interactions between a fluid droplet and a flexible thin film. A 2D energy functional is proposed, comprising the surface energy of the fluid, bending energy of the thin film and gravitational energy of the fluid. Through simulations with Surface Evolver, the shapes of the droplet and the thin film at equilibrium are obtained. A critical thin film length necessary for complete enclosure of the fluid droplet, and hence successful self-assembly into a PV device, is determined and compared with the experimental results and mechanics model predictions. The results from the modeling and energy approaches and the experiments are all consistent. Superhydrophobic surfaces, which have unique properties including self-cleaning and water repelling are desired in many applications. One excellent example in nature is the lotus leaf. To fabricate these surfaces, well designed micro/nano- surface structures are often employed. In this research, we fabricate superhydrophobic micropatterned Polydimethylsiloxane (PDMS) surfaces composed of micropillars of various sizes and arrangements by means of soft lithography. Both anisotropic surfaces, consisting of parallel grooves and cylindrical pillars in rectangular lattices, and isotropic surfaces, consisting of cylindrical pillars in square and hexagonal lattices, are considered. A novel technique is proposed to image the contact line (CL) of the droplet on the hydrophobic surface. This technique provides a new approach to distinguish between partial and complete wetting. The contact area between droplet and microtextured surface is then measured for a droplet in the Cassie state, which is a state of partial wetting. The results show that although the droplet is in the Cassie state, the contact area does not necessarily follow Cassie model predictions. Moreover, the CL is not circular, and is affected by the micropatterns, in both isotropic and anisotropic cases. Thus, it is suggested that along with the contact angle — the typical parameter reported in literature quantifying wetting, the size and shape of the contact area should also be presented. This technique is employed to investigate the evolution of the CL on a hydrophobic micropatterned surface in the cases of: a single droplet impacting the micropatterned surface, two droplets coalescing on micropillars, and a receding droplet resting on the micropatterned surface. Another parameter which quantifies hydrophobicity is the contact angle hysteresis (CAH), which indicates the resistance of the surface to the sliding of a droplet with a given volume. The conventional methods of using advancing and receding angles or tilting stage to measure the resistance of the micropatterned surface are indirect, without mentioning the inaccuracy due to the discrete and stepwise motion of the CL on micropillars. A micronewton force sensor is utilized to directly measure the resisting force by dragging a droplet on a microtextured surface. Together with the proposed imaging technique, the evolution of the CL during sliding is also explored. It is found that, at the onset of sliding, the CL behaves as a linear elastic solid with a constant stiffness. Afterwards, the force first increases and then decreases and reaches a steady state, accompanied with periodic oscillations due to regular pinning and depinning of the CL. Both the maximum and steady state forces are primarily dependent on area fractions of the micropatterned surfaces in our experiment. The resisting force is found to be proportional to the number of pillars which pin the CL at the trailing edge, validating the assumption that the resistance mainly arises from the CL pinning at the trailing edge. In each pinning-and-depinning cycle during the steady state, the CL also shows linear elastic behavior but with a lower stiffness. The force variation and energy dissipation involved can also be determined. This novel method of measuring the resistance of the micropatterned surface elucidates the dependence on CL pinning and provides more insight into the mechanisms of CAH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The prevalence of Diabetes mellitus (DM) is on a rise in sub-Saharan Africa and will more than double by 2025. Cardiovascular disease (CVD) accounts for up to 2/3 of all deaths in the diabetic population. Of all the CVD deaths in DM, 3/4 occur in sub Saharan Africa (SSA). Non invasive identification of cardiac abnormalities, such as Left Ventricular Hypertrophy (LVH), diastolic and systolic dysfunction, is not part of diabetes complications surveillance programs in Uganda and there is limited data on this problem. This study sought to determine the prevalence, types and factors associated with echocardiographic abnormalities among newly diagnosed diabetic patients at Mulago National referral hospital in Uganda. Methods: In this cross sectional study conducted between June 2014 and December 2014, we recruited 202 newly diagnosed adult diabetic patients. Information on patients\' socio-demographics, bio-physical profile, biochemical testing and echocardiographic findings was obtained for all the participants using a pre-tested questionnaire. An abnormal echocardiogram in this study was defined as the presence of LVH, diastolic and/or systolic dysfunction and wall motion abnormality. Bivariate and multivariate logistic regression analyses were used to investigate the association of several parameters with echocardiographic abnormalities. Results: Of the 202 patients recruited, males were 102(50.5%) and the mean age was 46±15 years. Majority of patients had type 2 DM, 156(77.2%) and type 1 DM, 41(20.3%) with mean HbA1C of 13.9±5.3%. Mean duration of diabetes was 2 months. The prevalence of an abnormal echocardiogram was 67.8 % (95% CI 60%-74%). Diastolic dysfunction, systolic dysfunction, LVH and wall motion abnormalities were present in 55.0%, 21.8%, 19.3% and 4.0% of all the participants respectively. In bivariate logistic regression analysis, the factors associated with an abnormal echocardiogram were age (OR 1.09 [95% CI 1.06–1.12], P <0.0001), type 2 DM (OR 5.8[95% CI 2.77-12.07], P<0.0001), hypertension (OR 2.64[95% CI 1.44-4.85], P=0.002), obesity (OR 3.51[955 CI 1.25-9.84], P=0.017 and increased waist circumference (OR 1.02[95% CI 1.00-1.04], P=0.024. On Multiple logistic regression analysis, age was the only factor associated with an abnormal echocardiogram (OR 1.09[95%CI 1.05-1.15], P<0.0001). Conclusion: Echocardiographic abnormalities were common among newly diagnosed adults with DM. Traditional CVD risk factors were associated with an abnormal echocardiogram in this patient population. Due to a high prevalence of echocardiographic abnormalities among newly diagnosed diabetics, we recommend screening for cardiac disease especially in patients who present with traditional CVD risk factors. This will facilitate early diagnosis, management and hence better patient outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colloid self-assembly under external control is a new route to fabrication of advanced materials with novel microstructures and appealing functionalities. The kinetic processes of colloidal self-assembly have attracted great interests also because they are similar to many atomic level kinetic processes of materials. In the past decades, rapid technological progresses have been achieved on producing shape-anisotropic, patchy, core-shell structured particles and particles with electric/magnetic charges/dipoles, which greatly enriched the self-assembled structures. Multi-phase carrier liquids offer new route to controlling colloidal self-assembly. Therefore, heterogeneity is the essential characteristics of colloid system, while so far there still lacks a model that is able to efficiently incorporate these possible heterogeneities. This thesis is mainly devoted to development of a model and computational study on the complex colloid system through a diffuse-interface field approach (DIFA), recently developed by Wang et al. This meso-scale model is able to describe arbitrary particle shape and arbitrary charge/dipole distribution on the surface or body of particles. Within the framework of DIFA, a Gibbs-Duhem-type formula is introduced to treat Laplace pressure in multi-liquid-phase colloidal system and it obeys Young-Laplace equation. The model is thus capable to quantitatively study important capillarity related phenomena. Extensive computer simulations are performed to study the fundamental behavior of heterogeneous colloidal system. The role of Laplace pressure is revealed in determining the mechanical equilibrium of shape-anisotropic particles at fluid interfaces. In particular, it is found that the Laplace pressure plays a critical role in maintaining the stability of capillary bridges between close particles, which sheds light on a novel route to in situ firming compact but fragile colloidal microstructures via capillary bridges. Simulation results also show that competition between like-charge repulsion, dipole-dipole interaction and Brownian motion dictates the degree of aggregation of heterogeneously charged particles. Assembly and alignment of particles with magnetic dipoles under external field is studied. Finally, extended studies on the role of dipole-dipole interaction are performed for ferromagnetic and ferroelectric domain phenomena. The results reveal that the internal field generated by dipoles competes with external field to determine the dipole-domain evolution in ferroic materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Australian Research Collaboration Service (ARCS) has been supporting a wide range of Collaboration Services and Tools which have been allowing researchers, groups and research communities to share ideas and collaborate across organisational boundaries.----- This talk will give an introduction to a number of exciting technologies which are now available. Focus will be on two main areas of Video Collaboration Tools, allowing researchers to talk face-to-face and share data in real-time, and Web Collaboration Tools, allowing researchers to share information and ideas with other like-minded researchers irrespective of distance or organisational structure. A number of examples will also be shown of how these technologies have been used with in various research communities.----- A brief introduction will be given to a number of services which ARCS is now operating and/or supporting such as:--- * EVO – A video conferencing application, which is particularly suited to desktop or low bandwidth applications.--- * AccessGrid – An open source video conferencing and collaboration tool kit, which is great for room to room meetings.--- * Sakai – An online collaboration and learning environment, support teaching and learning, ad hoc group collaboration, support for portfolios and research collaboration.--- * Plone – A ready-to-run content management system, that provides you with a system for managing web content that is ideal for project groups, communities, web sites, extranets and intranets.--- * Wikis – A way to easily create, edit, and link pages together, to create collaborative websites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – The purpose of this study is to investigate how collaborative relationships enhance continuous innovation in the supply chain using case studies. Design/methodology/approach – The data were collected from semi-structured interviews with 23 managers in ten case studies. The main intention was to comprehend how these firms engaged in collaborative relationships and their importance for successful innovation. The study adopted a qualitative approach to investigating these factors. Findings – The findings demonstrate how differing relationships can impact on the operation of firms and their capacities to innovate. The ability to work together with partners has enabled firms to integrate and link operations for increased effectiveness as well as embark on both radical and incremental innovation. Research limitations/implications – The research into the initiatives and strategies for collaboration was essentially exploratory. A qualitative approach using case studies acknowledged that the responses from managers were difficult to quantify or gauge the extent of these factors. Practical implications – The findings have shown various methods where firms integrated with customers and suppliers in the supply chain. This was evident in the views of managers across all the firms examined, supporting the importance of collaboration and efficient allocation of resources throughout the supply chain. They were able to set procedures in their dealings with partners, sharing knowledge and processes, and subsequently joint-planning and investing with them for better operations, systems and processes in the supply chain. Originality/value – The case studies serve as examples for managers in logistics organisation who are contemplating strategies and issues on collaborative relationships. The study provides important lessons on how such relationships can impact on the operation of firms and their capability to innovate. Keywords Supply chain management, Innovation, Relationship marketing

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel, simple and effective approach for tele-operation of aerial robotic vehicles with haptic feedback. Such feedback provides the remote pilot with an intuitive feel of the robot’s state and perceived local environment that will ensure simple and safe operation in cluttered 3D environments common in inspection and surveillance tasks. Our approach is based on energetic considerations and uses the concepts of network theory and port-Hamiltonian systems. We provide a general framework for addressing problems such as mapping the limited stroke of a ‘master’ joystick to the infinite stroke of a ‘slave’ vehicle, while preserving passivity of the closed-loop system in the face of potential time delays in communications links and limited sensor data

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Java programming language has potentially significant advantages for wireless sensor nodes but there is currently no feature-rich, open source virtual machine available. In this paper we present Darjeeling, a system comprising offline tools and a memory efficient run-time. The offline post-compiler tool analyzes, links and consolidates Java class files into loadable modules. The runtime implements a modified Java VM that supports multithreading and is designed specifically to operate in constrained execution environments such as wireless sensor network nodes and supports inheritance, threads, garbage collection, and loadable modules. We have demonstrated Java running on AVR128 and MSP430 microcontrollers at speeds of up to 70,000 JVM instructions per second.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Java programming language enjoys widespread popularity on platforms ranging from servers to mobile phones. While efforts have been made to run Java on microcontroller platforms, there is currently no feature-rich, open source virtual machine available. In this paper we present Darjeeling, a system comprising offline tools and a memory efficient runtime. The offline post-compiler tool analyzes, links and consolidates Java class files into loadable modules. The runtime implements a modified Java VM that supports multithreading and is designed specifically to operate in constrained execution environments such as wireless sensor network nodes. Darjeeling improves upon existing work by supporting inheritance, threads, garbage collection, and loadable modules while keeping memory usage to a minimum. We have demonstrated Java running on AVR128 and MSP430 micro-controllers at speeds of up to 70,000 JVM instructions per second.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the past few years, numerous data collection protocols have been developed for wireless sensor networks (WSNs). However, there has been no comparison of their relative performance in realistic environments. Here we report the results of an empirical study using a Fleck3 sensor network testbed for four different data collection protocols: One phase pull Directed Diffusion (DD), Expected Number of Transmissions (ETX), ETX with explicit acknowledgment (ETX-eAck), and ETX with implicit acknowledgment (ETX-iAck). Our empirical study provides useful insights for future sensor network deployments. When the required application end-to-end reliability is not strict (e.g., 70%) and link quality is good, DD and ETX are the best options because of their simplicity and low routing overhead. Both ETX-eAck and ETX-iAck achieve more than 90% end-to-end reliability when the link quality is reasonable (less than 25% packet loss). When the link quality is good, ETX-iAck introduces significantly less routing overhead (up to 50%) than ETX-eAck. However, if the radio transceiver supports variable packet length, ETX-eAck can outperform ETX-iAck when the link quality is poor. The important message from this paper is that choice of data collection protocol should come after the operating environment is understood. This understanding must include the characteristics of the radio transceiver, and link loss statistics from a long-term (across seasons and weather variation) radio survey of the site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research explores a new approach to Beckett’s Not I, a work in which the spectator is asked to focus primarily on a human mouth suspended in space eight feet off the ground. The digital reconstitution of the x, y and z axes in Beckett's work has been retitled "?ot I". In "?ot I", the prescribed x, y and z axes of the original have been re-spatialised environmentally, physically and aurally to create an invigorated version of the text. In this work, it is primarily the reconstitution of spatial dynamics and time that are explored. An adaption and series of responses to Samuel Beckett's "Not I", first performed at Melbourne University and Deakin Motion.Lab, Deakin University, 2007