918 resultados para Learning Networks


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pavement performance is one of the most important components of the pavement management system. Prediction of the future performance of a pavement section is important in programming maintenance and rehabilitation needs. Models for predicting pavement performance have been developed on the basis of traffic and age. The purpose of this research is to extend the use of a relatively new approach to performance prediction in pavement performance modeling using adaptive logic networks (ALN). Adaptive logic networks have recently emerged as an effective alternative to artificial neural networks for machine learning tasks. ^ The ALN predictive methodology is applicable to a wide variety of contexts including prediction of roughness based indices, composite rating indices and/or individual pavement distresses. The ALN program requires key information about a pavement section, including the current distress indexes, pavement age, climate region, traffic and other variables to predict yearly performance values into the future. ^ This research investigates the effect of different learning rates of the ALN in pavement performance modeling. It can be used at both the network and project level for predicting the long term performance of a road network. Results indicate that the ALN approach is well suited for pavement performance prediction modeling and shows a significant improvement over the results obtained from other artificial intelligence approaches. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An iterative travel time forecasting scheme, named the Advanced Multilane Prediction based Real-time Fastest Path (AMPRFP) algorithm, is presented in this dissertation. This scheme is derived from the conventional kernel estimator based prediction model by the association of real-time nonlinear impacts that caused by neighboring arcs’ traffic patterns with the historical traffic behaviors. The AMPRFP algorithm is evaluated by prediction of the travel time of congested arcs in the urban area of Jacksonville City. Experiment results illustrate that the proposed scheme is able to significantly reduce both the relative mean error (RME) and the root-mean-squared error (RMSE) of the predicted travel time. To obtain high quality real-time traffic information, which is essential to the performance of the AMPRFP algorithm, a data clean scheme enhanced empirical learning (DCSEEL) algorithm is also introduced. This novel method investigates the correlation between distance and direction in the geometrical map, which is not considered in existing fingerprint localization methods. Specifically, empirical learning methods are applied to minimize the error that exists in the estimated distance. A direction filter is developed to clean joints that have negative influence to the localization accuracy. Synthetic experiments in urban, suburban and rural environments are designed to evaluate the performance of DCSEEL algorithm in determining the cellular probe’s position. The results show that the cellular probe’s localization accuracy can be notably improved by the DCSEEL algorithm. Additionally, a new fast correlation technique for overcoming the time efficiency problem of the existing correlation algorithm based floating car data (FCD) technique is developed. The matching process is transformed into a 1-dimensional (1-D) curve matching problem and the Fast Normalized Cross-Correlation (FNCC) algorithm is introduced to supersede the Pearson product Moment Correlation Co-efficient (PMCC) algorithm in order to achieve the real-time requirement of the FCD method. The fast correlation technique shows a significant improvement in reducing the computational cost without affecting the accuracy of the matching process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This presentation will show how a grassroots initiative has budded into the Florida International University (FIU) Libraries being an instrumental part of online learning. It will describe some of the marketing and outreach efforts that have been successful and share ideas on how to build alliances and networks with online faculty and students. Along with outreach efforts, the presentation will demonstrate some of the successful tools used to meet the needs of online students. Some of the these tools include becoming embedded in courses, building course and program specific Libguides, using Adobe Connect to reach students, creating simple YouTube videos, and creating more professional videos with FIU Online. The presentation will conclude with sharing some tips on how to keep the workload manageable when distance-learning programs are growing at the same time as library budgets and resources are shrinking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The great interest in nonlinear system identification is mainly due to the fact that a large amount of real systems are complex and need to have their nonlinearities considered so that their models can be successfully used in applications of control, prediction, inference, among others. This work evaluates the application of Fuzzy Wavelet Neural Networks (FWNN) to identify nonlinear dynamical systems subjected to noise and outliers. Generally, these elements cause negative effects on the identification procedure, resulting in erroneous interpretations regarding the dynamical behavior of the system. The FWNN combines in a single structure the ability to deal with uncertainties of fuzzy logic, the multiresolution characteristics of wavelet theory and learning and generalization abilities of the artificial neural networks. Usually, the learning procedure of these neural networks is realized by a gradient based method, which uses the mean squared error as its cost function. This work proposes the replacement of this traditional function by an Information Theoretic Learning similarity measure, called correntropy. With the use of this similarity measure, higher order statistics can be considered during the FWNN training process. For this reason, this measure is more suitable for non-Gaussian error distributions and makes the training less sensitive to the presence of outliers. In order to evaluate this replacement, FWNN models are obtained in two identification case studies: a real nonlinear system, consisting of a multisection tank, and a simulated system based on a model of the human knee joint. The results demonstrate that the application of correntropy as the error backpropagation algorithm cost function makes the identification procedure using FWNN models more robust to outliers. However, this is only achieved if the gaussian kernel width of correntropy is properly adjusted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Constant technology advances have caused data explosion in recent years. Accord- ingly modern statistical and machine learning methods must be adapted to deal with complex and heterogeneous data types. This phenomenon is particularly true for an- alyzing biological data. For example DNA sequence data can be viewed as categorical variables with each nucleotide taking four different categories. The gene expression data, depending on the quantitative technology, could be continuous numbers or counts. With the advancement of high-throughput technology, the abundance of such data becomes unprecedentedly rich. Therefore efficient statistical approaches are crucial in this big data era.

Previous statistical methods for big data often aim to find low dimensional struc- tures in the observed data. For example in a factor analysis model a latent Gaussian distributed multivariate vector is assumed. With this assumption a factor model produces a low rank estimation of the covariance of the observed variables. Another example is the latent Dirichlet allocation model for documents. The mixture pro- portions of topics, represented by a Dirichlet distributed variable, is assumed. This dissertation proposes several novel extensions to the previous statistical methods that are developed to address challenges in big data. Those novel methods are applied in multiple real world applications including construction of condition specific gene co-expression networks, estimating shared topics among newsgroups, analysis of pro- moter sequences, analysis of political-economics risk data and estimating population structure from genotype data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is a case study that describes the design and delivery of national PhD lectures with 40 PhD candidates in Digital Arts and Humanities in Ireland simultaneously to four remote locations, in Trinity College Dublin, in University College Cork, in NUI Maynooth and NUI Galway. Blended learning approaches were utilized to augment traditional teaching practices combining: face-to-face engagement, video-conferencing to multiple sites, social media lecture delivery support – a live blog and micro blogging, shared, open student web presence online. Techniques for creating an effective, active learning environment were discerned via a range of learning options offered to students through student surveys after semester one. Students rejected the traditional lecture format, even through the novel delivery method via video link to a number of national academic institutions was employed. Students also rejected the use of a moderated forum as a means of creating engagement across the various institutions involved. Students preferred a mix of approaches for this online national engagement. The paper discusses successful methods used to promote interactive teaching and learning. These included Peer to peer learning, Workshop style delivery, Social media. The lecture became a national, synchronous workshop. The paper describes how allowing students to have a voice in the virtual classroom they become animated and engaged in an open culture of shared experience and scholarship, create networks beyond their institutions, and across disciplinary boundaries. We offer an analysis of our experiences to assist other educators in their course design, with a particular emphasis on social media engagement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While molecular and cellular processes are often modeled as stochastic processes, such as Brownian motion, chemical reaction networks and gene regulatory networks, there are few attempts to program a molecular-scale process to physically implement stochastic processes. DNA has been used as a substrate for programming molecular interactions, but its applications are restricted to deterministic functions and unfavorable properties such as slow processing, thermal annealing, aqueous solvents and difficult readout limit them to proof-of-concept purposes. To date, whether there exists a molecular process that can be programmed to implement stochastic processes for practical applications remains unknown.

In this dissertation, a fully specified Resonance Energy Transfer (RET) network between chromophores is accurately fabricated via DNA self-assembly, and the exciton dynamics in the RET network physically implement a stochastic process, specifically a continuous-time Markov chain (CTMC), which has a direct mapping to the physical geometry of the chromophore network. Excited by a light source, a RET network generates random samples in the temporal domain in the form of fluorescence photons which can be detected by a photon detector. The intrinsic sampling distribution of a RET network is derived as a phase-type distribution configured by its CTMC model. The conclusion is that the exciton dynamics in a RET network implement a general and important class of stochastic processes that can be directly and accurately programmed and used for practical applications of photonics and optoelectronics. Different approaches to using RET networks exist with vast potential applications. As an entropy source that can directly generate samples from virtually arbitrary distributions, RET networks can benefit applications that rely on generating random samples such as 1) fluorescent taggants and 2) stochastic computing.

By using RET networks between chromophores to implement fluorescent taggants with temporally coded signatures, the taggant design is not constrained by resolvable dyes and has a significantly larger coding capacity than spectrally or lifetime coded fluorescent taggants. Meanwhile, the taggant detection process becomes highly efficient, and the Maximum Likelihood Estimation (MLE) based taggant identification guarantees high accuracy even with only a few hundred detected photons.

Meanwhile, RET-based sampling units (RSU) can be constructed to accelerate probabilistic algorithms for wide applications in machine learning and data analytics. Because probabilistic algorithms often rely on iteratively sampling from parameterized distributions, they can be inefficient in practice on the deterministic hardware traditional computers use, especially for high-dimensional and complex problems. As an efficient universal sampling unit, the proposed RSU can be integrated into a processor / GPU as specialized functional units or organized as a discrete accelerator to bring substantial speedups and power savings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work introduces joint power amplifier (PA) and I/Q modulator modelling and compensation for LongTerm Evolution (LTE) transmitters using artificial neural networks (ANNs). The proposed solution util-izes a powerful nonlinear autoregressive with exogenous inputs (NARX) ANN architecture, which yieldsnoticeable results for high peak to average power ratio (PAPR) LTE signals. Given the ANNs learning capa-bilities, this one-step solution, which includes the mitigation of both PA nonlinearity and I/Q modulatorimpairments, is both accurate and adaptable

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper reports on a study of design studio culture from a student perspective. Learning in design studio culture has been theorised variously as a signature pedagogy emulating professional practice models, as a community of practice and as a form of problem-based learning, all largely based on the study of teaching events in studio. The focus of this research has extended beyond formally recognized activities to encompass the student’s experience of their social and community networks, working places and study set-ups, to examine how these have contributed to studio culture and how there have been supported by studio teaching. Semi-structured interviews with final year undergraduate students of architecture formed the basis of the study using an interpretivist approach informed by Actor-network theory, with studio culture featured as the focal actor, enrolling students and engaging with other actors, together constituting an actor-network of studio culture. The other actors included social community patterns and activities; the numerous working spaces (including but not limited to the studio space itself); the equipment, tools of trade and material pre-requisites for working; the portfolio enrolling the other actors to produce work for it; and the various formal and informal events associated with the course itself. Studio culture is a highly charged social arena: The question is how, and in particular, which aspects of it support learning? Theoretical models of situated learning and communities of practice models have informed the analysis, with Bourdieu’s theory of practice, and his interrelated concepts of habitus, field and capital providing a means of relating individually acquired habits and modes of working to social contexts. Bourdieu’s model of habitus involves the externalisation through the social realm of habits and knowledge previously internalised. It is therefore a useful model for considering whole individual learning activities; shared repertoires and practices located in the social realm. The social milieu of the studio provides a scene for the exercise and display of ‘practicing’ and the accumulation of a form of ‘practicing-capital’. This capital is a property of the social milieu rather than the space, so working or practicing in the company of others (in space and through social media) becomes a more valued aspect of studio than space or facilities alone. This practicing-capital involves the acquisition of a habitus of studio culture, with the transformation of physical practices or habits into social dispositions, acquiring social capital (driving the social milieu) and cultural capital (practicing-knowledge) in the process. The research drew on students’ experiences, and their practicing ‘getting a feel for the game’ by exploring the limits or boundaries of the field of studio culture. The research demonstrated that a notional studio community was in effect a social context for supporting learning; a range of settings to explore and test out newly internalised knowledge, demonstrate or display ideas, modes of thinking and practicing. The study presents a nuanced interpretation of how students relate to a studio culture that involves a notional community, and a developing habitus within a field of practicing that extends beyond teaching scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Societies which suffer from ethnic and political divisions are often characterised by patterns of social and institutional separation, and sometimes these divisions remain even after political conflict has ended. This has occurred in Northern Ireland where there is, and remains, a long-standing pattern of parallel institutions and services for the different communities. A socially significant example lies in the education system where a parallel system of Catholic and Protestant schools has been in place since the establishment of a national school system in the 1830s. During the years of political violence in Northern Ireland a variety of educational interventions were implemented to promote reconciliation, but most of them failed to create any systemic change. This paper describes a post-conflict educational initiative known as Shared Education which aims to promote social cohesion and school improvement by encouraging sustained and regular shared learning between students and broader collaboration between teachers and school leaders from different schools. The paper examines the background to work on Shared Education, describes a ‘sharing continuum’ which emerged as an evaluation and policy tool from this work and considers evidence from a case study of a Shared Education school partnership in a divided city in Northern Ireland. The paper will conclude by highlighting some of the significant social and policy impact of the Shared Education work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we describe how the pathfinder algorithm converts relatedness ratings of concept pairs to concept maps; we also present how this algorithm has been used to develop the Concept Maps for Learning website (www.conceptmapsforlearning.com) based on the principles of effective formative assessment. The pathfinder networks, one of the network representation tools, claim to help more students memorize and recall the relations between concepts than spatial representation tools (such as Multi- Dimensional Scaling). Therefore, the pathfinder networks have been used in various studies on knowledge structures, including identifying students’ misconceptions. To accomplish this, each student’s knowledge map and the expert knowledge map are compared via the pathfinder software, and the differences between these maps are highlighted. After misconceptions are identified, the pathfinder software fails to provide any feedback on these misconceptions. To overcome this weakness, we have been developing a mobile-based concept mapping tool providing visual, textual and remedial feedback (ex. videos, website links and applets) on the concept relations. This information is then placed on the expert concept map, but not on the student’s concept map. Additionally, students are asked to note what they understand from given feedback, and given the opportunity to revise their knowledge maps after receiving various types of feedback.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OSAN, R. , TORT, A. B. L. , AMARAL, O. B. . A mismatch-based model for memory reconsolidation and extinction in attractor networks. Plos One, v. 6, p. e23113, 2011.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper outlines the development of a crosscorrelation algorithm and a spiking neural network (SNN) for sound localisation based on real sound recorded in a noisy and dynamic environment by a mobile robot. The SNN architecture aims to simulate the sound localisation ability of the mammalian auditory pathways by exploiting the binaural cue of interaural time difference (ITD). The medial superior olive was the inspiration for the SNN architecture which required the integration of an encoding layer which produced biologically realistic spike trains, a model of the bushy cells found in the cochlear nucleus and a supervised learning algorithm. The experimental results demonstrate that biologically inspired sound localisation achieved using a SNN can compare favourably to the more classical technique of cross-correlation.