860 resultados para Large-scale Structure
Resumo:
The effect of superficial air velocity on lovastatin production by Aspergillus terreus PL10 using wheat bran and wheat straw was investigated in a 7 l and a 1200 l packed bed reactor. Mass transfer and reaction limitations on bioconversion in the 1200 l reactor was studied based on a central composite design of experiments constructed using the superficial air velocity and solid substrate composition as variables and lovastatin production as response.
The surface response prediction showed a maximum lovastatin production of 1.86 mg g-1 dry substrate on day 5 of the bioconversion process when the reactor was operated using 0.19 vvm airflow rate (23.37 cm min-1 superficial air velocity) and 54% substrate composition (wC). Lovastatin production did not increase significantly with superficial air velocity in the 7 l reactor. Variation in temperature and exit CO2 composition was recorded, and the Damköhler number was calculated for lovastatin production at these two scales. The results showed that in larger reactors mass transfer limitation controlled bioconversion while in smaller reactors bioconversion was controlled by reaction rate limitations. In addition, mass transfer limitations in larger reactors reduced the rate of metabolic heat removal, resulting in hot spots within the substrate bed.
Resumo:
In multiuser diversity systems, the impact of large-scale fading on the total system performance such as link quality and system power has not been widely addressed. Considering large-scale fading, we propose an adaptive multiuser scheduling to minimize the total system power while reducing the effect of large-scale fading on the system bit error rate. The number of active users is adapted to every shadow variation, which varies slower than small-scale fading. We consider the two widely used multiuser systems (i.e., delay-tolerant, and delay-sensitive multiuser systems). Closed-form expressions for the bit error rate are derived. The selection procedure for the minimum number of users is introduced for guaranteed performance of the above multiuser systems. The impact of adaptive multiuser diversity gain on the system power and bit error rate is illustrated over large-scale fading channels by numerical results.
Resumo:
Coronary artery disease (CAD) is the commonest cause of death. Here, we report an association analysis in 63,746 CAD cases and 130,681 controls identifying 15 loci reaching genome-wide significance, taking the number of susceptibility loci for CAD to 46, and a further 104 independent variants (r(2)
Resumo:
A technique for optimizing the efficiency of the sub-map method for large-scale simultaneous localization and mapping (SLAM) is proposed. It optimizes the benefits of the sub-map technique to improve the accuracy and consistency of an extended Kalman filter (EKF)-based SLAM. Error models were developed and engaged to investigate some of the outstanding issues in employing the sub-map technique in SLAM. Such issues include the size (distance) of an optimal sub-map, the acceptable error effect caused by the process noise covariance on the predictions and estimations made within a sub-map, when to terminate an existing sub-map and start a new one and the magnitude of the process noise covariance that could produce such an effect. Numerical results obtained from the study and an error-correcting process were engaged to optimize the accuracy and convergence of the Invariant Information Local Sub-map Filter previously proposed. Applying this technique to the EKF-based SLAM algorithm (a) reduces the computational burden of maintaining the global map estimates and (b) simplifies transformation complexities and data association ambiguities usually experienced in fusing sub-maps together. A Monte Carlo analysis of the system is presented as a means of demonstrating the consistency and efficacy of the proposed technique.
Resumo:
In this paper, we investigate secure device-to-device (D2D) communication in energy harvesting large-scale cognitive cellular networks. The energy constrained D2D transmitter harvests energy from multi-antenna equipped power beacons (PBs), and communicates with the corresponding receiver using the spectrum of the cellular base stations (BSs). We introduce a power transfer model and an information signal model to enable wireless energy harvesting and secure information transmission. In the power transfer model, we propose a new power transfer policy, namely, best power beacon (BPB) power transfer. To characterize the power transfer reliability of the proposed policy, we derive new closed-form expressions for the exact power outage probability and the asymptotic power outage probability with large antenna arrays at PBs. In the information signal model, we present a new comparative framework with two receiver selection schemes: 1) best receiver selection (BRS), and 2) nearest receiver selection (NRS). To assess the secrecy performance, we derive new expressions for the secrecy throughput considering the two receiver selection schemes using the BPB power transfer policies. We show that secrecy performance improves with increasing densities of PBs and D2D receivers because of a larger multiuser diversity gain. A pivotal conclusion is reached that BRS achieves better secrecy performance than NRS but demands more instantaneous feedback and overhead.
Resumo:
Grinding solid reagents under solvent-free or low-solvent conditions (mechanochemistry) is emerging as a general synthetic technique which is an alternative to conventional solvent-intensive methods. However, it is essential to find ways to scale-up this type of synthesis if its promise of cleaner manufacturing is to be realised. Here, we demonstrate the use of twin screw and single screw extruders for the continuous synthesis of various metal complexes, including Ni(salen), Ni(NCS)(2)(PPh3)(2) as well as the commercially important metal organic frameworks (MOFs) Cu-3(BTC)(2) (HKUST-1), Zn(2-methylimidazolate)(2) (ZIF-8, MAF-4) and Al(fumarate)(OH). Notably, Al(fumarate)(OH) has not previously been synthesised mechanochemically. Quantitative conversions occur to give products at kg h(-1) rates which, after activation, exhibit surface areas and pore volumes equivalent to those of materials produced by conventional solvent-based methods. Some reactions can be performed either under completely solvent-free conditions whereas others require the addition of small amounts of solvent (typically 3-4 mol equivalents). Continuous neat melt phase synthesis is also successfully demonstrated by both twin screw and single screw extrusion for ZIF-8. The latter technique provided ZIF-8 at 4 kg h(-1). The space time yields (STYs) for these methods of up to 144 x 10(3) kg per m(3) per day are orders of magnitude greater than STYs for other methods of making MOFs. Extrusion methods clearly enable scaling of mechanochemical and melt phase synthesis under solvent-free or low-solvent conditions, and may also be applied in synthesis more generally.
Resumo:
There has been a significant increase in the occurrence of cyanobacterial blooms in freshwaters over the past few decades due to escalating nutrient levels. These cyanobacteria release a range of toxins, for example microcystins which are chemically very stable. Many cyanotoxins are consequently very difficult to remove from water using existing treatment technologies. Semiconductor photocatalysis, however, has proven to be a very effective process for the removal of these compounds from water. In this chapter we consider the application of this highly versatile and exciting technology for the decomposition of cyanotoxins. Furthermore design concepts for solar photocatalytic reactors that could be utilized for the removal of these toxins are also considered
Resumo:
OBJECTIVES: Barrett’s esophagus (BE) is a common premalignant lesion for which surveillance is recommended. This strategy is limited by considerable variations in clinical practice. We conducted an international, multidisciplinary, systematic search and evidence-based review of BE and provided consensus recommendations for clinical use in patients with nondysplastic, indefinite, and low-grade dysplasia (LGD). METHODS: We defined the scope, proposed statements, and searched electronic databases, yielding 20,558 publications that were screened, selected online, and formed the evidence base. We used a Delphi consensus process, with an 80% agreement threshold, using GRADE (Grading of Recommendations Assessment, Development and Evaluation) to categorize the quality of evidence and strength of recommendations. RESULTS: In total, 80% of respondents agreed with 55 of 127 statements in the final voting rounds. Population endoscopic screening is not recommended and screening should target only very high-risk cases of males aged over 60 years with chronic uncontrolled reflux. A new international definition of BE was agreed upon. For any degree of dysplasia, at least two specialist gastrointestinal (GI) pathologists are required. Risk factors for cancer include male gender, length of BE, and central obesity. Endoscopic resection should be used for visible, nodular areas. Surveillance is not recommended for <5 years of life expectancy. Management strategies for indefinite dysplasia (IND) and LGD were identified, including a de-escalation strategy for lower-risk patients and escalation to intervention with follow-up for higher-risk patients. CONCLUSIONS: In this uniquely large consensus process in gastroenterology, we made key clinical recommendations for the escalation/de-escalation of BE in clinical practice. We made strong recommendations for the prioritization of future research.
Resumo:
This paper describes large scale tests conducted on a novel unglazed solar air collector system. The proposed system, referred to as a back-pass solar collector (BPSC), has on-site installation and aesthetic advantages over conventional unglazed transpired solar collectors (UTSC) as it is fully integrated within a standard insulated wall panel. This paper presents the results obtained from monitoring a BPSC wall panel over one year. Measurements of temperature, wind velocity and solar irradiance were taken at multiple air mass flow rates. It is shown that the length of the collector cavities has a direct impact on the efficiency of the system. It is also shown that beyond a height-to-flow ratio of 0.023m/m<sup>3</sup>/hr/m<sup>2</sup>, no additional heat output is obtained by increasing the collector height for the experimental setup in this study, but these numbers would obviously be different if the experimental setup or test environment (e.g. location and climate) change. An equation for predicting the temperature rise of the BPSC is proposed.