988 resultados para Land equivalent ratio
Resumo:
Microbial respiratory reduction of nitrous oxide (N2O) to dinitrogen (N2) via denitrification plays a key role within the global N-cycle since it is the most important process for converting reactive nitrogen back into inert molecular N2. However, due to methodological constraints, we still lack a comprehensive, quantitative understanding of denitrification rates and controlling factors across various ecosystems. We investigated N2, N2O and NO emissions from irrigated cotton fields within the Aral Sera Basin using the He/O2 atmosphere gas flow soil core technique and an incubation assay. NH4NO3 fertilizer, equivalent to 75 kg ha−1 and irrigation water, adjusting the water holding capacity to 70, 100 and 130% were applied to the incubation vessels to assess its influence on gaseous N emissions. Under soil conditions as they are naturally found after concomitant irrigation and fertilization, denitrification was the dominant process and N2 the main end product of denitrification. The mean ratios of N2/N2O emissions increased with increasing soil moisture content. N2 emissions exceeded N2O emissions by a factor of 5 ± 2 at 70% soil water holding capacity (WHC) and a factor of 55 ± 27 at 130% WHC. The mean ratios of N2O/NO emissions varied between 1.5 ± 0.4 (70% WHC) and 644 ± 108 (130% WHC). The magnitude of N2 emissions for irrigated cotton was estimated to be in the range of 24 ± 9 to 175 ± 65 kg-N ha−1season−1, while emissions of NO were only of minor importance (between 0.1 to 0.7 kg-N ha−1 season−1). The findings demonstrate that for irrigated dryland soils in the Aral Sera Basin, denitrification is a major pathway of N-loss and that substantial amounts of N-fertilizer are lost as N2 to the atmosphere for irrigated dryland soils.
Resumo:
Land use and agricultural practices can result in important contributions to the global source strength of atmospheric nitrous oxide (N2O) and methane (CH4). However, knowledge of gas flux from irrigated agriculture is very limited. From April 2005 to October 2006, a study was conducted in the Aral Sea Basin, Uzbekistan, to quantify and compare emissions of N2O and CH4 in various annual and perennial land-use systems: irrigated cotton, winter wheat and rice crops, a poplar plantation and a natural Tugai (floodplain) forest. In the annual systems, average N2O emissions ranged from 10 to 150 μg N2O-N m−2 h−1 with highest N2O emissions in the cotton fields, covering a similar range of previous studies from irrigated cropping systems. Emission factors (uncorrected for background emission), used to determine the fertilizer-induced N2O emission as a percentage of N fertilizer applied, ranged from 0.2% to 2.6%. Seasonal variations in N2O emissions were principally controlled by fertilization and irrigation management. Pulses of N2O emissions occurred after concomitant N-fertilizer application and irrigation. The unfertilized poplar plantation showed high N2O emissions over the entire study period (30 μg N2O-N m−2 h−1), whereas only negligible fluxes of N2O (<2 μg N2O-N m−2 h−1) occurred in the Tugai. Significant CH4 fluxes only were determined from the flooded rice field: Fluxes were low with mean flux rates of 32 mg CH4 m−2 day−1 and a low seasonal total of 35.2 kg CH4 ha−1. The global warming potential (GWP) of the N2O and CH4 fluxes was highest under rice and cotton, with seasonal changes between 500 and 3000 kg CO2 eq. ha−1. The biennial cotton–wheat–rice crop rotation commonly practiced in the region would average a GWP of 2500 kg CO2 eq. ha−1 yr−1. The analyses point out opportunities for reducing the GWP of these irrigated agricultural systems by (i) optimization of fertilization and irrigation practices and (ii) conversion of annual cropping systems into perennial forest plantations, especially on less profitable, marginal lands.
Resumo:
Objective To evaluate methods for monitoring monthly aggregated hospital adverse event data that display clustering, non-linear trends and possible autocorrelation. Design Retrospective audit. Setting The Northern Hospital, Melbourne, Australia. Participants 171,059 patients admitted between January 2001 and December 2006. Measurements The analysis is illustrated with 72 months of patient fall injury data using a modified Shewhart U control chart, and charts derived from a quasi-Poisson generalised linear model (GLM) and a generalised additive mixed model (GAMM) that included an approximate upper control limit. Results The data were overdispersed and displayed a downward trend and possible autocorrelation. The downward trend was followed by a predictable period after December 2003. The GLM-estimated incidence rate ratio was 0.98 (95% CI 0.98 to 0.99) per month. The GAMM-fitted count fell from 12.67 (95% CI 10.05 to 15.97) in January 2001 to 5.23 (95% CI 3.82 to 7.15) in December 2006 (p<0.001). The corresponding values for the GLM were 11.9 and 3.94. Residual plots suggested that the GLM underestimated the rate at the beginning and end of the series and overestimated it in the middle. The data suggested a more rapid rate fall before 2004 and a steady state thereafter, a pattern reflected in the GAMM chart. The approximate upper two-sigma equivalent control limit in the GLM and GAMM charts identified 2 months that showed possible special-cause variation. Conclusion Charts based on GAMM analysis are a suitable alternative to Shewhart U control charts with these data.
Resumo:
Effective response by government and individuals to the risk of land degradation requires an understanding of regional climate variations and the impacts of climate and management on condition and productivity of land and vegetation resources. Analysis of past land degradation and climate variability provides some understanding of vulnerability to current and future climate changes and the information needs for more sustainable management. We describe experience in providing climate risk assessment information for managing for the risk of land degradation in north-eastern Australian arid and semi-arid regions used for extensive grazing. However, we note that information based on historical climate variability, which has been relied on in the past, will now also have to factor in the influence of human-induced climate change. Examples illustrate trends in climate for Australia over the past decade and the impacts on indicators of resource condition. The analysis highlights the benefits of insights into past trends and variability in rainfall and other climate variables based on extended historic databases. This understanding in turn supports more reliable regional climate projections and decision support information for governments and land managers to better manage the risk of land degradation now and in the future.
Resumo:
Grading is basic to the work of Landscape Architects concerned with design on the land. Gradients conducive to easy use, rainwater drained away, and land slope contributing to functional and aesthetic use are all essential to the amenity and pleasure of external environments. This workbook has been prepared specifically to support the program of landscape construction for students in Landscape Architecture. It is concerned primarily with the technical design of grading rather than with its aesthetic design. It must be stressed that the two aspects are rarely separate; what is designed should be technically correct and aesthetically pleasing - it needs to look good as well as to function effectively. This revised edition contains amended and new content which has evolved out of student classes and discussion with colleagues. I am pleased to have on record that every delivery of this workbook material has resulted in my own better understanding of grading and the techniques for its calculation and communication.
Resumo:
A travel article about a journey to the Cobourg Peninsula, Arnhem Land. "NOW I know I'm back,'' says our guide David McMahon as the scent of wood smoke makes its way into the 4WD. For McMahon, being back means Kakadu and Arnhem Land, and ultimately our final destination in the Northern Territory's Cobourg Peninsula. In the north, one of the first things you need to adjust is your attitude to fire. The indigenous people have long worked with it. The rangers perform controlled burns. The animals have adapted and know how to escape the flames. The smoke trail leads us down the old Jim Jim Rd, our first stretch of dirt track since leaving Darwin. Our destination is the Venture North campsite at Garig Gunak Barlu National Park...
Resumo:
As the cost of mineral fertilisers increases globally, organic soil amendments (OAs) from agricultural sources are increasingly being used as substitutes for nitrogen. However, the impact of OAs on the production of greenhouse gases (CO2 and N2O) is not well understood. A 60-day laboratory incubation experiment was conducted to investigate the impacts of applying OAs (equivalent to 296 kg N ha−1 on average) on N2O and CO2 emissions and soil properties of clay and sandy loam soils from sugar cane production. The experiment included 6 treatments, one being an un-amended (UN) control with addition of five OAs being raw mill mud (MM), composted mill mud (CM), high N compost (HC), rice husk biochar (RB), and raw mill mud plus rice husk biochar (MB). These OAs were incubated at 60, 75 and 90% water-filled pore space (WFPS) at 25°C with urea (equivalent to 200 kg N ha−1) added to the soils thirty days after the incubation commenced. Results showed WFPS did not influence CO2 emissions over the 60 days but the magnitude of emissions as a proportion of C applied was RB < CM < MB < HC
Resumo:
Land-use regression (LUR) is a technique that can improve the accuracy of air pollution exposure assessment in epidemiological studies. Most LUR models are developed for single cities, which places limitations on their applicability to other locations. We sought to develop a model to predict nitrogen dioxide (NO2) concentrations with national coverage of Australia by using satellite observations of tropospheric NO2 columns combined with other predictor variables. We used a generalised estimating equation (GEE) model to predict annual and monthly average ambient NO2 concentrations measured by a national monitoring network from 2006 through 2011. The best annual model explained 81% of spatial variation in NO2 (absolute RMS error=1.4 ppb), while the best monthly model explained 76% (absolute RMS error=1.9 ppb). We applied our models to predict NO2 concentrations at the ~350,000 census mesh blocks across the country (a mesh block is the smallest spatial unit in the Australian census). National population-weighted average concentrations ranged from 7.3 ppb (2006) to 6.3 ppb (2011). We found that a simple approach using tropospheric NO2 column data yielded models with slightly better predictive ability than those produced using a more involved approach that required simulation of surface-to-column ratios. The models were capable of capturing within-urban variability in NO2, and offer the ability to estimate ambient NO2 concentrations at monthly and annual time scales across Australia from 2006–2011. We are making our model predictions freely available for research.
Resumo:
This research was a step forward in investigating the characteristics of recycled concrete aggregates to use as an unbound pavement material. The results present the guidelines for successfully application of recycled concrete aggregates in high traffic volume roads. Outcomes of the research create more economical and environmental benefits through reducing the depletion of natural resources and effectively manage the generated concrete waste before disposal as land fill.
Resumo:
This paper proposes a physically motivated reappraisal of manoeuvring models for ships and presents a new model developed from first principles by application of low aspect-ratio aerodynamic theory and Lagrangian mechanics. The coefficients of the model are shown to be related to physical processes, and validation is presented using the results from a planar motion mechanism dataset.
Resumo:
Integration of land use and transport decisions to achieve sustainable travel behavior has been considered an integral element for sustainable urban development. However, before the popularity of urban sustainability concept, land use and transport interaction had been scrutinized as strictly separate entities in the urban planning and development domains. Fortunately today the concept of sustainability has been pushed to the forefront of policy-making and politics as the world wakes up to the impacts of climate change and the effects of the rapid urbanization and modern urban lifestyles. The paper therefore aims to highlight the importance of the interplay between transport, land use and the environment. This review paper provides evidence from the literature including the Transport, Land Use and the Environment Special Issue contributions and global best practice cases to showcase new empirical approaches and investigations from different parts of the world that contribute to the wealth of knowledge in exploring the interplay between transport, land use and the environment thoroughly.
Resumo:
Electrical resistivity of soils and sediments is strongly influenced by the presence of interstitial water. Taking advantage of this dependency, electrical-resistivity imaging (ERI) can be effectively utilized to estimate subsurface soil-moisture distributions. The ability to obtain spatially extensive data combined with time-lapse measurements provides further opportunities to understand links between land use and climate processes. In natural settings, spatial and temporal changes in temperature and porewater salinity influence the relationship between soil moisture and electrical resistivity. Apart from environmental factors, technical, theoretical, and methodological ambiguities may also interfere with accurate estimation of soil moisture from ERI data. We have examined several of these complicating factors using data from a two-year study at a forest-grassland ecotone, a boundary between neighboring but different plant communities.At this site, temperature variability accounts for approximately 20-45 of resistivity changes from cold winter to warm summer months. Temporal changes in groundwater conductivity (mean=650 S/cm =57.7) and a roughly 100-S/cm spatial difference between the forest and grassland had only a minor influence on the moisture estimates. Significant seasonal fluctuations in temperature and precipitation had negligible influence on the basic measurement errors in data sets. Extracting accurate temporal changes from ERI can be hindered by nonuniqueness of the inversion process and uncertainties related to time-lapse inversion schemes. The accuracy of soil moisture obtained from ERI depends on all of these factors, in addition to empirical parameters that define the petrophysical soil-moisture/resistivity relationship. Many of the complicating factors and modifying variables to accurately quantify soil moisture changes with ERI can be accounted for using field and theoretical principles.