903 resultados para K most critical paths
Resumo:
Las Mipymes son un componente fundamental para el desarrollo económico y social de cualquier país, en especial de un país como Colombia en donde representan el 99,9% de las empresas actualmente constituidas, concentrando el 81% de los empleados a nivel nacional (Fedesarrollo, 2013). Aunque juegan un papel protagónico en la economía colombiana, las Mipymes aún deben recorrer un camino extenso para poder explotar todo el potencial con el que cuentan, puesto que presentan un alto índice de mortandad empresarial en los primeros años de funcionamiento, esto evidenciado en los resultados del estudio GEM (Global Entrepreneurship Monitor, 2009) en donde se encontró que sólo el 12,61% de los negocios lograron superar los 42 meses de permanencia en el mercado (El País, 2010) principalmente a causa de la ausencia de una planeación estratégica de largo plazo que les permita a los negocios emprendedores del país alcanzar la competitividad. Si bien es cierto que crear empresa es relativamente sencillo, son múltiples los retos tanto internos como externos que deben enfrentar las organizaciones para poder alcanzar una etapa de madurez empresarial, sobre todo en los primeros años de funcionamiento que son los más críticos y decisivos para el futuro de cualquier empresa, es por esto que se hace indispensable emplear estrategias que les permitan ser sostenibles a largo plazo, en un entorno altamente competitivo por empresas tanto nacionales como internacionales, siendo este uno de los propósitos fundamentales al que deberían apostar los empresarios colombianos para crear un impacto positivo en la sociedad y aportar a la competitividad nacional. Bakery Service Foods, es una empresa dedicada a la comercialización y distribución de insumos de panadería con sede en el barrio Carvajal en la ciudad de Bogotá. Desde su constitución, el 29 de diciembre de 2008, la empresa ha buscado posicionarse en un mercado en donde tanto empresas grandes como Grasco, Grupo Team, Sigra, Duquesa, Conaceites, Alvarado, Aceites Finos; así como microempresas sin infraestructura ni solidez económica, componen un entorno altamente competitivo y hacinado que representa un desafío para una pequeña empresa familiar que no cuenta con un músculo financiero significativo. Por otra parte, Bakery Service Foods a traviesa por un período de alta incertidumbre debido a que el proveedor que representa el 85% de las ventas de los productos a los cuales representan, FANAGRA S.A, atraviesa por una completa reestructuración debido a la venta de dicha empresa a una multinacional suiza. Esta situación representa un alto riesgo para la compañía y exige que se emprendan acciones oportunas que les permitan reducir la alta dependencia en un único proveedor. Teniendo en cuenta que una de las ambiciones desde la fundación de la compañía ha sido incursionar y ser una empresa competitiva en el mercado de Food Service, que perdure en el tiempo, ¿Qué tan viable es diversificar el portafolio de la empresa Bakery Service Foods (BSF) en el mercado Food Service? Con este proyecto se busca diseñar una propuesta de diversificación de portafolio para la empresa Bakery Service Foods (BSF) analizando el mercado Food Service, por medio del modelo de Ventaja Competitiva de Michael Porter; lo anterior, con el propósito de que la empresa se consolide en este mercado como un aliado estratégico para sus clientes y representados, y con un modelo de negocio sostenible a largo plazo. Finalmente, se espera que a través de la propuesta de mejora para Bakery Service Foods, se afiancen los conocimientos administrativos obtenidos durante el pregrado en Administración de Empresas, aplicando satisfactoriamente las herramientas, metodologías y bases conceptuales adquiridas, para enriquecer el proceso de aprendizaje profesional y aportar valor a una empresa colombiana desde el mercado de Food Service.
Resumo:
Vcmax is the rate of maximum velocity of carboxylation of plants and is considered one of the most critical parameters for changes in vegetation in face of global changes and it has a direct impact on gross primary productivity. Physiological processes are considered the main sources of uncertainties in dynamic global vegetation models (DGVMs). The Caatinga biome, in the semiarid region of northeastern Brazil, is extremely important due to its biodiversity and endemism. In a field work realized in an area of preserved Caatinga forest, measurements of carbon assimilation (in response to light and CO2) were performed on 11 individuals of a native species. These results of Vcmax measurements in Caatinga were compared with parameterization of models, revealing that Vcmax is not well adjusted in several DGVMs. Also, the values obtained in the Caatinga field experiments were very close to empirical values obtained in the Northern hemisphere (Austria). These ecophysiological measurements can contribute in understanding of this biome
High-Resolution N2 Adsorption Isotherms at 77.4 K: Critical Effect of the He Used During Calibration
Resumo:
Accurate characterization of the microporous structure in porous solids is of paramount importance for several applications such as energy and gas storage, nanoconfinement reactions, and so on. Among the different techniques for precise textural characterization, high-precision gas adsorption measurement of probe molecules at cryogenic temperatures (e.g., N2 at 77.4 K and Ar at 87.3 K) is the most widely used, after appropriate calibration of the sample holder with a probe gas, which does not experience physisorption processes. Although traditionally helium has been considered not to be adsorbed in porous solids at cryogenic temperatures, here we show that even at 77.4 K (high above its boiling temperature, 4 K) the use of He in the calibration step can give rise to erroneous interpretations when narrow micropores/constrictions are present.
Resumo:
Aim: In the current climate of medical education, there is an ever-increasing demand for and emphasis on simulation as both a teaching and training tool. The objective of our study was to compare the realism and practicality of a number of artificial blood products that could be used for high-fidelity simulation. Method: A literature and internet search was performed and 15 artificial blood products were identified from a variety of sources. One product was excluded due to its potential toxicity risks. Five observers, blinded to the products, performed two assessments on each product using an evaluation tool with 14 predefined criteria including color, consistency, clotting, and staining potential to manikin skin and clothing. Each criterion was rated using a five-point Likert scale. The products were left for 24 hours, both refrigerated and at room temperature, and then reassessed. Statistical analysis was performed to identify the most suitable products, and both inter- and intra-rater variability were examined. Results: Three products scored consistently well with all five assessors, with one product in particular scoring well in almost every criterion. This highest-rated product had a mean rating of 3.6 of 5.0 (95% posterior Interval 3.4-3.7). Inter-rater variability was minor with average ratings varying from 3.0 to 3.4 between the highest and lowest scorer. Intrarater variability was negligible with good agreement between first and second rating as per weighted kappa scores (K = 0.67). Conclusion: The most realistic and practical form of artificial blood identified was a commercial product called KD151 Flowing Blood Syrup. It was found to be not only realistic in appearance but practical in terms of storage and stain removal.
Resumo:
This chapter attends to the legal and political geographies of one of Earth's most important, valuable, and pressured spaces: the geostationary orbit. Since the first, NASA, satellite entered it in 1964, this small, defined band of Outer Space, 35,786km from the Earth's surface, and only 30km wide, has become a highly charged legal and geopolitical environment, yet it remains a space which is curiously unheard of outside of specialist circles. For the thousands of satellites which now underpin the Earth's communication, media, and data industries and flows, the geostationary orbit is the prime position in Space. The geostationary orbit only has the physical capacity to hold approximately 1500 satellites; in 1997 there were approximately 1000. It is no overstatement to assert that media, communication, and data industries would not be what they are today if it was not for the geostationary orbit. This chapter provides a critical legal geography of the geostationary orbit, charting the topography of the debates and struggles to define and manage this highly-important space. Drawing on key legal documents such as the Outer Space Treaty and the Moon Treaty, the chapter addresses fundamental questions about the legal geography of the orbit, questions which are of growing importance as the orbit’s available satellite spaces diminish and the orbit comes under increasing pressure. Who owns the geostationary orbit? Who, and whose rules, govern what may or may not (literally) take place within it? Who decides which satellites can occupy the orbit? Is the geostationary orbit the sovereign property of the equatorial states it supertends, as these states argued in the 1970s? Or is it a part of the res communis, or common property of humanity, which currently legally characterises Outer Space? As challenges to the existing legal spatiality of the orbit from launch states, companies, and potential launch states, it is particularly critical that the current spatiality of the orbit is understood and considered. One of the busiest areas of Outer Space’s spatiality is international territorial law. Mentions of Space law tend to evoke incredulity and ‘little green men’ jokes, but as Space becomes busier and busier, international Space law is growing in complexity and importance. The chapter draws on two key fields of research: cultural geography, and critical legal geography. The chapter is framed by the cultural geographical concept of ‘spatiality’, a term which signals the multiple and dynamic nature of geographical space. As spatial theorists such as Henri Lefebvre assert, a space is never simply physical; rather, any space is always a jostling composite of material, imagined, and practiced geographies (Lefebvre 1991). The ways in which a culture perceives, represents, and legislates that space are as constitutive of its identity--its spatiality--as the physical topography of the ground itself. The second field in which this chapter is situated—critical legal geography—derives from cultural geography’s focus on the cultural construction of spatiality. In his Law, Space and the Geographies of Power (1994), Nicholas Blomley asserts that analyses of territorial law largely neglect the spatial dimension of their investigations; rather than seeing the law as a force that produces specific kinds of spaces, they tend to position space as a neutral, universally-legible entity which is neatly governed by the equally neutral 'external variable' of territorial law (28). 'In the hegemonic conception of the law,' Pue similarly argues, 'the entire world is transmuted into one vast isotropic surface' (1990: 568) on which law simply acts. But as the emerging field of critical legal geography demonstrates, law is not a neutral organiser of space, but is instead a powerful cultural technology of spatial production. Or as Delaney states, legal debates are “episodes in the social production of space” (2001, p. 494). International territorial law, in other words, makes space, and does not simply govern it. Drawing on these tenets of the field of critical legal geography, as well as on Lefebvrian concept of multipartite spatiality, this chapter does two things. First, it extends the field of critical legal geography into Space, a domain with which the field has yet to substantially engage. Second, it demonstrates that the legal spatiality of the geostationary orbit is both complex and contested, and argues that it is crucial that we understand this dynamic legal space on which the Earth’s communications systems rely.
Resumo:
A survey of nurses working in critical care units in 89 Queensland hospitals was conducted to investigate their perceptions of critical care nurses' educational needs. Two thirds of the 62 respondents were from rural units and one third were from metropolitan units. Most respondents, irrespective of geographic location, wanted critical care education to be located in hospitals and to be accredited as a graduate diploma course. Rural and metropolitan nurses had similar educational needs and many worked for hospitals that were not offering adequate orientation or inservice critical care education. The findings that nursing staff turnover was a problem in metropolitan units and that the rural workforce was more stable have implications for the development of educational programs.
Resumo:
Robot Path Planning (RPP) in dynamic environments is a search problem based on the examination of collision-free paths in the presence of dynamic and static obstacles. Many techniques have been developed to solve this problem. Trapping in a local minima and maintaining a Real-Time performance are known as the two most important challenges that these techniques face to solve such problem. This study presents a comprehensive survey of the various techniques that have been proposed in this domain. As part of this survey, we include a classification of the approaches and identify their methods.
Resumo:
This project focussed on the phosphorus (P) and potassium (K) status of northern cropping soils. Stores of P and K have been depleted by crop removal and limited fertiliser application, with depletion most significant in the subsoil. Soil testing strategies are confounded by slowly available mineral reserves with uncertain availability. The utility of new soil tests was assessed to measure these reserves, their availability to plants quantified and a regional sampling strategy undertaken to identify areas of greatest P and K deficit. Fertiliser application strategies for P and K have been tested and the interactions between these and other nutrients have been determined in a large field program.
Resumo:
Wastewater-based epidemiology (WBE) applies advanced analytical methods to quantify drug residues in wastewater with the aim to estimate illicit drug use at the population level. Transformation processes during transport in sewers (chemical and biological reactors) and storage of wastewater samples before analysis are expected to change concentrations of different drugs to varying degrees. Ignoring transformation for drugs with low to medium stability will lead to an unknown degree of systematic under- or overestimation of drug use, which should be avoided. This review aims to summarize the current knowledge related to the stability of commonly investigated drugs and, furthermore, suggest a more effective approach to future experiments. From over 100 WBE studies, around 50 mentioned the importance of stability and 24 included tests in wastewater. Most focused on in-sample stability (i.e., sample preparation, preservation and storage) and some extrapolated to in-sewer stability (i.e., during transport in real sewers). While consistent results were reported for rather stable compounds (e.g., MDMA and methamphetamine), a varying range of stability under different or similar conditions was observed for other compounds (e.g., cocaine, amphetamine and morphine). Wastewater composition can vary considerably over time, and different conditions prevail in different sewer systems. In summary, this indicates that more systematic studies are needed to: i) cover the range of possible conditions in sewers and ii) compare results more objectively. To facilitate the latter, we propose a set of parameters that should be reported for in-sewer stability experiments. Finally, a best practice of sample collection, preservation, and preparation before analysis is suggested in order to minimize transformation during these steps.
Resumo:
The Ball-Larus path-profiling algorithm is an efficient technique to collect acyclic path frequencies of a program. However, longer paths -those extending across loop iterations - describe the runtime behaviour of programs better. We generalize the Ball-Larus profiling algorithm for profiling k-iteration paths - paths that can span up to to k iterations of a loop. We show that it is possible to number suchk-iteration paths perfectly, thus allowing for an efficient profiling algorithm for such longer paths. We also describe a scheme for mixed-mode profiling: profiling different parts of a procedure with different path lengths. Experimental results show that k-iteration profiling is realistic.
Resumo:
We consider a variant of the popular matching problem here. The input instance is a bipartite graph $G=(\mathcal{A}\cup\mathcal{P},E)$, where vertices in $\mathcal{A}$ are called applicants and vertices in $\mathcal{P}$ are called posts. Each applicant ranks a subset of posts in an order of preference, possibly involving ties. A matching $M$ is popular if there is no other matching $M'$ such that the number of applicants who prefer their partners in $M'$ to $M$ exceeds the number of applicants who prefer their partners in $M$ to $M'$. However, the “more popular than” relation is not transitive; hence this relation is not a partial order, and thus there need not be a maximal element here. Indeed, there are simple instances that do not admit popular matchings. The questions of whether an input instance $G$ admits a popular matching and how to compute one if it exists were studied earlier by Abraham et al. Here we study reachability questions among matchings in $G$, assuming that $G=(\mathcal{A}\cup\mathcal{P},E)$ admits a popular matching. A matching $M_k$ is reachable from $M_0$ if there is a sequence of matchings $\langle M_0,M_1,\dots,M_k\rangle$ such that each matching is more popular than its predecessor. Such a sequence is called a length-$k$ voting path from $M_0$ to $M_k$. We show an interesting property of reachability among matchings in $G$: there is always a voting path of length at most 2 from any matching to some popular matching. Given a bipartite graph $G=(\mathcal{A}\cup\mathcal{P},E)$ with $n$ vertices and $m$ edges and any matching $M_0$ in $G$, we give an $O(m\sqrt{n})$ algorithm to compute a shortest-length voting path from $M_0$ to a popular matching; when preference lists are strictly ordered, we have an $O(m+n)$ algorithm. This problem has applications in dynamic matching markets, where applicants and posts can enter and leave the market, and applicants can also change their preferences arbitrarily. After any change, the current matching may no longer be popular, in which case we are required to update it. However, our model demands that we switch from one matching to another only if there is consensus among the applicants to agree to the switch. Hence we need to update via a voting path that ends in a popular matching. Thus our algorithm has applications here.
Resumo:
We have analyzed the stability of various oxides of K and find that K(2)O(2) is the most stable one. The additional stability is traced to the presence of oxygen dimers in K(2)O(2) which interact to form molecular orbitals. Other oxides such as KO(2) and KO(3) which also have dimers/trimers of oxygens are found to be less stable. This is traced to the shorter O-O bonds that one finds in them which gives rise to a significant coulomb repulsion between the electrons on the oxygen atoms making up the dimer/trimer, making them less stable.
Resumo:
For most fluids, there exist a maximum and a minimum in the curvature of the reduced vapor pressure curve, p(r) = p(r)(T-r) (with p(r) = p/p(c) and T-r = T/T-c, p(c) and T-c being the pressure and temperature at the critical point). By analyzing National Institute of Standards and Technology (NIST) data on the liquid-vapor coexistence curve for 105 fluids, we find that the maximum occurs in the reduced temperature range 0.5 <= T-r <= 0.8 while the minimum occurs in the reduced temperature range 0.980 <= T-r <= 0.995. Vapor pressure equations for which d(2)p(r)/dT(r)(2) diverges at the critical point present a minimum in their curvature. Therefore, the point of minimum curvature can be used as a marker for the critical region. By using the well-known Ambrose-Walton (AW) vapor pressure equation we obtain the reduced temperatures of the maximum and minimum curvature in terms of the Pitzer acentric factor. The AW predictions are checked against those obtained from NIST data. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Transport critical current measurements have been carried out on melt-processed thick films of YBa2Cu3O7-δ on yttria-stabilized zirconia in fields of up to 8 T both within grains and across grain boundaries. These measurements yield Jc values of ∼3000 A cm-2 at 4.2 K and zero magnetic field and 400 A cm -2 at 77 K and zero magnetic field, taking the entire sample width as the definitive dimension. Optical and scanning electron microscopy reveals that the thick-film grains consist typically of a central "hub" region ∼50 μm in diameter, which is well connected to radial subgrains or "spokes" which extend ∼1 mm to define the complete grain structure. Attempts have been made to correlate the transport measurements of inter- and intra-hub-and-spoke (H-S) critical current with values of this parameter derived previously from magnetization measurements. Analysis of the transport measurements indicates that current flow through H-S grains is constrained to paths along the spokes via the grain hub. Taking the size of the hub as the definitive dimension yields an intra-H-S grain Jc of ∼60 000 A cm-2 at 4.2 K and 0 T, which is in reasonable agreement with the magnetization data. Experiments in which the hub is removed from individual grains confirm that this feature determines critically the J c of the film.
Resumo:
Among various mutation detection methods, constant denaturant capillary electrophoresis (CDCE) is one of the most common techniques for rapid identification of known or unknown mutations. In this report, a CDCE analysis method with homemade linear polyacrylamide (LPA) kit was developed on ABI 310 genetic analyzer, the effect and relationship of various denaturing factors in CDCE analysis were investigated and K-ras gene mutations of 31 coloerctal cancer patients were detected. Results indicate that, with the increase of chemical danaturant concentration, the optimum temperature was lowered, and when the concentration of urea (formamide) was higher than 7 M (40%), the homoduplex and heteroduplex of mutant samples were separated with difficulty. Detection results of K-ras gene in colorectal samples indicated that mutations were present in eight (26%) of 31 patients; most mutations were localized in codon 12, which is thought to be a critical step and plays an important role in human colorectal carcinogenesisas. Copyright (C) 2004 John Wiley Sons, Ltd.