995 resultados para Japanese Culture
Resumo:
OBJETIVE: to evaluate the efficacy of urine culture by bag specimen for the detection of neonatal urinary tract infection in full-term newborn infants. Retrospective study (1997) including full-term newborn infants having a positive urine culture (>100,000 CFU/ml) by bag specimen collection. The urinary tract infection diagnosis was confirmed by positive urine culture (suprapubic bladder aspiration method). The select cases were divided into three groups, according to newborn infant age at the bag specimen collection: GI (< 48 h, n = 17), GII (48 h to 7 d, n = 35) and GIII (> 7 d, n = 9). Sixty one full-term newborn infants were studied (5.1 % of total infants). The diagnosis was confirmed on 19/61 (31.1 %) of full-term infants born alive. Distribution among the groups was: GI = 2/17 (11.8 %), GII = 10//35 (28.6 %), and GIII = 7/9 (77.7 %). The most relevant clinical symptoms were: fever (GI - 100 %, GII - 91.4 %) and weight loss (GI - 35.3 %, GII - 45.7 %). Urine culture results for specimens collected by suprapubic aspiration were: E. coli GI (100 %), GII (40 %) and GIII (28.6 %), E. faecalis GI (30%), Staphylococcus coagulase-negative GII (20 %) and GIII (42.8 %), and Staphylococcus aureus GII (10 %). Correlation between positive urine culture collection (bag specimen method) and urinary tract infection diagnosis, using relative risk analysis, produced the following results: GI=0.30 (CI95% 0.08-1.15), GII=0.51 (CI 95% 0.25-1.06) and GIII=3.31 (CI95% 1.8-6.06) The most frequent urinary tract infection clinical signs in the first week were fever and weight loss, while non-specific symptomatology occurred later. E. coli was most frequent infectious agent, although from the 7th day of life, staphylococcus was noted. The urine culture (bag specimen method) was effective in detecting urinary tract infection only after the 7th day of life.
Resumo:
This paper identifies and critiques the value of stillness as a necessary condition for the display and appreciation of art objects like the 16th century Japanese Namban screens, whose history and function is characterised by forms of movement. Drawing on multi-sited fieldwork in museum galleries that display these screens in Japan, Portugal and North America I will detail how the art-historical interpretation of the physical passage of these objects and their value as cultural heritage is based upon the fixed point perspectivism of networks and a visualist paradigm. Museum focused processes of conservation and display can be understood as extending this paradigm. By means of environmental controls, directed towards the location of perceptible meaning in what is available to vision and the necessary attenuation of the other senses the material movements of the object and movements of constituent materials in the object are stilled. The argument is for a sensory approach to museums and the objects within them, which in this case takes account of the material movements of the screens by engaging the senses through the ‘touch of sound’ as well as vision.
Resumo:
This study presents an empirical investigation of the determinants of net interest margins and spreads in the Russian and Japanese banking sectors with a particular focus on commercial banks. Net interest mar-gins and spreads serve as indicators of financial intermediation efficiency. This paper employed a bank-level unbalanced panel dataset prolonging from 2005 to 2014. My main empirical results show that bank characteristics explain the most of the variation in not only net interest margins but also in spreads. Capi-talization, liquidity risk, inflation, economic growth, private and government debt are important determi-nants of margin in Russia. In Japan to the contrary loan and deposit market concentration along with bank size do predominate. Common significant variables in both countries are the substitution effect, cost effi-ciency and profitability. Turning to net interest spreads, micro- and macro-specific variables are the main significant drivers in Russia. I reach the conclusion that there are no significant determinants of net interest spreads in Japan within the original selection of variables, but operating efficiency and deposits to total funding seem to prevail. In both countries, there are solid differences in the net interest margins as well as spreads once the pre- and the post-crisis periods are considered.
Resumo:
FCT
Resumo:
The present work project studies the next step in the internationalization process of Shoyce, the soy milk products brand of Nutre. In order to select the best target market in the Asia-Pacific for Nutre to export, a sequential screening process was developed using two complementary approaches: preliminary country screening and country ranking, followed by an in-depth analysis of the country ranking first. The analysis revealed Japan as the most attractive country for Shoyce’s international expansion. Potential entry modes in the Japanese soy milk market were then evaluated, whereby direct exporting via a local distributor was found to be the most appropriate.
Resumo:
Inspired by the native co-existence of multiple cell types and from the concept of deconstructing the stem cell niche, we propose a co-encapsulation strategy within liquified capsules. The present team has already proven the application of liquified capsules as bioencapsulation systems1. Here, we intend to use the optimized system towards osteogenic differentiation. Capsules encapsulating adipose stem cells alone (MONO-capsules) or in co-culture with endothelial cells (CO-capsules) were maintained in endothelial medium with or without osteogenic differentiation factors. The suitability of the capsules for living stem and endothelial cells encapsulation was demonstrated by MTS and DNA assays. The osteogenic differentiation was assessed by quantifying the deposition of calcium and the activity of ALP up to 21 days. CO capsules had an enhanced osteogenic differentiation, even when cultured in the absence of osteogenic factors. Furthermore, osteopontin and CD31 could be detected, which respectively indicate that osteogenic differentiation had occurred and endothelial cells maintained their phenotype. An enhanced osteogenic differentiation by co-encapsulation was also confirmed by the upregulation of osteogenic markers (BMP-2, RUNX2, BSP) while the expression of angiogenic markers (VEGF, vWF, CD31) revealed the presence of endothelial cells. The proposed capsules can also act as a growth factor release system upon implantation, as showed by VEGF and BMP-2 quantification. These findings demonstrate that the co-encapsulation of stem and endothelial cells within liquified injectable capsules provides a promising strategy for bone tissue engineering. Â
Resumo:
Wharton's jelly stem cells (WJSCs) are a potential source of transplantable stem cells in cartilage-regenerative strategies, due to their highly proliferative and multilineage differentiation capacity. We hypothesized that a non-direct co-culture system with human articular chondrocytes (hACs) could enhance the potential chondrogenic phenotype of hWJSCs during the expansion phase compared to those expanded in monoculture conditions. Primary hWJSCs were cultured in the bottom of a multiwell plate separated by a porous transwell membrane insert seeded with hACs. No statistically significant differences in hWJSCs duplication number were observed under either of the culture conditions during the expansion phase. hWJSCs under co-culture conditions show upregulations of collagen type I and II, COMP, TGFβ1 and aggrecan, as well as of the main cartilage transcription factor, SOX9, when compared to those cultured in the absence of chondrocytes. Chondrogenic differentiation of hWJSCs, previously expanded in co-culture and monoculture conditions, was evaluated for each cellular passage using the micromass culture model. Cells expanded in co-culture showed higher accumulation of glycosaminoglycans (GAGs) compared to cells in monoculture, and immunohistochemistry for localization of collagen type I revealed a strong detection signal when hWJSCs were expanded under monoculture conditions. In contrast, type II collagen was detected when cells were expanded under co-culture conditions, where numerous round-shaped cell clusters were observed. Using a micromass differentiation model, hWJSCs, previously exposed to soluble factors secreted by hACs, were able to express higher levels of chondrogenic genes with deposition of cartilage extracellular matrix components, suggesting their use as an alternative cell source for treating degenerated cartilage.
Resumo:
Considering that vernacular architecture may bear important lessons on hazard mitigation, this chapter focuses on the European Mediterranean countries and studies traditional seismic-resistant architectural elements and techniques that local populations developed to prevent or repair earthquake damage. This area was selected as a case study because, as a highly seismic region, it has suffered the effect of many earthquakes along the history and, thus, regions within this area are prone to have developed a Local Seismic Culture. After reviewing seismic resistant construction concepts, a wide range of traditional construction solutions that, in many cases, have shown to improve the seismic performance of vernacular constructions of these regions is presented, as a contribution to the general overview of retrofitting building systems provided in this book. The main motivation is that most of these techniques can be successfully applied to preserve and to retrofit surviving examples without prejudice for their identity.
Resumo:
Yarrowia lipolytica, a yeast strain with a huge biotechnological potential, capable to produce metabolites such as γ-decalactone, citric acid, intracellular lipids and enzymes, possesses the ability to change its morphology in response to environmental conditions. In the present study, a quantitative image analysis (QIA) procedure was developed for the identification and quantification of Y. lipolytica W29 and MTLY40-2P strains dimorphic growth, cultivated in batch cultures on hydrophilic (glucose and N-acetylglucosamine (GlcNAc) and hydrophobic (olive oil and castor oil) media. The morphological characterization of yeast cells by QIA techniques revealed that hydrophobic carbon sources, namely castor oil, should be preferred for both strains growth in the yeast single cell morphotype. On the other hand, hydrophilic sugars, namely glucose and GlcNAc caused a dimorphic transition growth towards the hyphae morphotype. Experiments for γ-decalactone production with MTLY40-2P strain in two distinct morphotypes (yeast single cells and hyphae cells) were also performed. The obtained results showed the adequacy of the proposed morphology monitoring tool in relation to each morphotype on the aroma production ability. The present work allowed establishing that QIA techniques can be a valuable tool for the identification of the best culture conditions for industrial processes implementation.
Resumo:
Microbiology as a scientific discipline recognised the need to preserve microorganisms for scientific studies establishing from its very beginning research culture collections (CC). Later on, to better serve different scientific fields and bioindustries with the increasing number of strains of scientific, medical, ecological and biotechnological importance public service CC were established with the specific aims to support their user communities. Currently, the more developed public service CC are recognised as microBiological Resources Centres (mBRC). mBRC are considered to be one of the key elements for sustainable international scientific infrastructure, which is necessary to underpin successful delivery of the benefits of biotechnology, whether within the health sector, the industrial sector or other sectors, and in turn ensure that these advances help drive economic growth. In more detail, mBRCs are defined by Organisation for Economic Co-operation and Development (OECD) as service providers and repositories of the living cells, genomes of organisms, and information relating to heredity and functions of biological systems. mBRCs contain collections of culturable organisms (e.g., microorganisms, plant, animal cells), replicable parts of these (e.g. genomes, plasmids, virus, cDNAs), viable but not yet culturable organisms, cells and tissues, as well as database containing molecular, physiological and structural information relevant to these collections and related bioinformatics. Thus mBRCs are fundamental to harnessing and preserving the world’s microbial biodiversity and genetic resources and serve as an essential element of the infrastructure for research and development. mBRCs serve a multitude of functions and assume a range of shapes and forms. Some are large national centres performing a comprehensive role providing access to diverse organisms. Other centres play much narrower, yet important, roles supplying limited but crucial specialised resources. In the era of the knowledge-based bio-economy mBRCs are recognised as vital element to underpinning the biotechnology.
Resumo:
Specific tissues, such as cartilage undergo mechanical solicitation under their normal performance in human body. In this sense, it seems necessary that proper tissue engineering strategies of these tissues should incorporate mechanical solicitations during cell culture, in order to properly evaluate the influence of the mechanical stimulus. This work reports on a user-friendly bioreactor suitable for applying controlled mechanical stimulation - amplitude and frequency - to three dimensional scaffolds. Its design and main components are described, as well as its operation characteristics. The modular design allows easy cleaning and operating under laminar hood. Different protocols for the sterilization of the hermetic enclosure are tested and ensure lack of observable contaminations, complying with the requirements to be used for cell culture. The cell viability study was performed with KUM5 cells.
Resumo:
In tissue engineering of cartilage, polymeric scaffolds are implanted in the damaged tissue and subjected to repeated compression loading cycles. The possibility of failure due to mechanical fatigue has not been properly addressed in these scaffolds. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. This is related to inherent discontinuities in the material due to the micropore structure of the macro-pore walls that act as stress concentration points. In this work, chondrogenic precursor cells have been seeded in Poly-ε-caprolactone (PCL) scaffolds with fibrin and some were submitted to free swelling culture and others to cyclic loading in a bioreactor. After cell culture, all the samples were analyzed for fatigue behavior under repeated loading-unloading cycles. Moreover, some components of the extracellular matrix (ECM) were identified. No differences were observed between samples undergoing free swelling or bioreactor loading conditions, neither respect to matrix components nor to mechanical performance to fatigue. The ECM did not achieve the desired preponderance of collagen type II over collagen type I which is considered the main characteristic of hyaline cartilage ECM. However, prediction in PCL with ECM constructs was possible up to 600 cycles, an enhanced performance when compared to previous works. PCL after cell culture presents an improved fatigue resistance, despite the fact that the measured elastic modulus at the first cycle was similar to PCL with poly(vinyl alcohol) samples. This finding suggests that fatigue analysis in tissue engineering constructs can provide additional information missed with traditional mechanical measurements.
Resumo:
Thermodynamic stability of black holes, described by the Rényi formula as equilibrium compatible entropy function, is investigated. It is shown that within this approach, asymptotically flat, Schwarzschild black holes can be in stable equilibrium with thermal radiation at a fixed temperature. This implies that the canonical ensemble exists just like in anti-de Sitter space, and nonextensive effects can stabilize the black holes in a very similar way as it is done by the gravitational potential of an anti-de Sitter space. Furthermore, it is also shown that a Hawking–Page-like black hole phase transition occurs at a critical temperature which depends on the q-parameter of the Rényi formula.
Resumo:
Dissertação de mestrado em BiofÃsica e Bionanossistemas