931 resultados para Incremental exercise test


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Aerobic endurance is an important aspect of physical fitness that enables individuals living with HIV to endure in the work place as well as in agricultural operations in order to earn a living and improve their quality of life. However, despite high HIV prevalence rates, the aerobic endurance status of young Malawians living with HIV remains unknown. The objective of this study was to determine the difference in VO2max between HIV-negative and HIV-positive individuals in Blantyre, Malawi. Methods Fifty five participants (17 males and 38 females) who have HIV and were not taking antiretroviral medication and 78 HIV-negative participants (45 males and 33 females) performed the Rockport submaximal treadmill exercise test. Measures of body weight, post-exercise heart rate and time to walk one mile were obtained and used to predict VO2max. Comparisons between groups were adjusted for age differences using analysis of covariance (ANCOVA). Results VO2max was significantly lower in HIV-positive subjects [31.1, 28.7 - 33.5mL.kg-1.min-1(mean, 95% CI)] compared with HIV-negative subjects [56.2, 54.3 - 58.1mL.kg-1.min-1]. Conclusion Aerobic endurance was markedly reduced in HIV-positive participants compared with HIV-negative participants. Findings of the current study implicate factors associated with the HIV infection as contributors to a decreased aerobic endurance in people living with HIV.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The aim of this study was to locate the breakpoints of cerebral and muscle oxygenation and muscle electrical activity during a ramp exercise in reference to the first and second ventilatory thresholds. Twenty-five cyclists completed a maximal ramp test on an electromagnetically braked cycle-ergometer with a rate of increment of 25 W/min. Expired gazes (breath-by-breath), prefrontal cortex and vastus lateralis (VL) oxygenation [Near-infrared spectroscopy (NIRS)] together with electromyographic (EMG) Root Mean Square (RMS) activity for the VL, rectus femoris (RF), and biceps femoris (BF) muscles were continuously assessed. There was a non-linear increase in both cerebral deoxyhemoglobin (at 56 ± 13% of the exercise) and oxyhemoglobin (56 ± 8% of exercise) concomitantly to the first ventilatory threshold (57 ± 6% of exercise, p > 0.86, Cohen's d < 0.1). Cerebral deoxyhemoglobin further increased (87 ± 10% of exercise) while oxyhemoglobin reached a plateau/decreased (86 ± 8% of exercise) after the second ventilatory threshold (81 ± 6% of exercise, p < 0.05, d > 0.8). We identified one threshold only for muscle parameters with a non-linear decrease in muscle oxyhemoglobin (78 ± 9% of exercise), attenuation in muscle deoxyhemoglobin (80 ± 8% of exercise), and increase in EMG activity of VL (89 ± 5% of exercise), RF (82 ± 14% of exercise), and BF (85 ± 9% of exercise). The thresholds in BF and VL EMG activity occurred after the second ventilatory threshold (p < 0.05, d > 0.6). Our results suggest that the metabolic and ventilatory events characterizing this latter cardiopulmonary threshold may affect both cerebral and muscle oxygenation levels, and in turn, muscle recruitment responses.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Studies on the assessment of heart rate variability threshold (HRVT) during walking are scarce. We determined the reliability and validity of HRVT assessment during the incremental shuttle walk test (ISWT) in healthy subjects. Thirty-one participants aged 57 ± 9 years (17 females) performed 3 ISWTs. During the 1st and 2nd ISWTs, instantaneous heart rate variability was calculated every 30 s and HRVT was measured. Walking velocity at HRVT in these tests (WV-HRVT1 and WV-HRVT2) was registered. During the 3rd ISWT, physiological responses were assessed. The ventilatory equivalents were used to determine ventilatory threshold (VT) and the WV at VT (WV-VT) was recorded. The difference between WV-HRVT1 and WV-HRVT2 was not statistically significant (median and interquartile range = 4.8; 4.8 to 5.4 vs4.8; 4.2 to 5.4 km/h); the correlation between WV-HRVT1 and WV-HRVT2 was significant (r = 0.84); the intraclass correlation coefficient was high (0.92; 0.82 to 0.96), and the agreement was acceptable (-0.08 km/h; -0.92 to 0.87). The difference between WV-VT and WV-HRVT2 was not statistically significant (4.8; 4.8 to 5.4 vs 4.8; 4.2 to 5.4 km/h) and the agreement was acceptable (0.04 km/h; -1.28 to 1.36). HRVT assessment during walking is a reliable measure and permits the estimation of VT in adults. We suggest the use of the ISWT for the assessment of exercise capacity in middle-aged and older adults.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Aims Technological advances in cardiac imaging have led to dramatic increases in test utilization and consumption of a growing proportion of cardiovascular healthcare costs. The opportunity costs of strategies favouring exercise echocardiography or SPECT imaging have been incompletely evaluated. Methods and results We examined prognosis and cost-effectiveness of exercise echocardiography (n=4884) vs. SPECT (n=4637) imaging in stable, intermediate risk, chest pain patients. Ischaemia extent was defined as the number of vascular territories with echocardiographic wall motion or SPECT perfusion abnormalities. Cox proportional hazard models were employed to assess time to cardiac death or myocardial infarction (MI). Total cardiovascular costs were summed (discounted and inflation-corrected) throughout follow-up. A cost-effectiveness ratio = 2% annual event risk), SPECT ischaemia was associated with earlier and greater utilization of coronary revascularization (P < 0.0001) resulting in an incremental cost-effectiveness ratio of $32 381/LYS. Conclusion Health care policies aimed at allocating limited resources can be effectively guided by applying clinical and economic outcomes evidence. A strategy aimed at cost-effective testing would support using echocardiography in low-risk patients with suspected coronary disease, whereas those higher risk patients benefit from referral to SPECT imaging.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effects of a short-term low-or high-carbohydrate (CHO) diet consumed after exercise on sympathetic nervous system activity. Twelve healthy males underwent a progressive incremental test; a control measurement of plasma catecholamines and heart rate variability (HRV); an exercise protocol to reduce endogenous CHO stores; a low-or high-CHO diet (counterbalanced order) consumed for 2 days, beginning immediately after the exercise protocol; and a second resting plasma catecholamine and HRV measurement. The exercise and diet protocols and the second round of measurements were performed again after a 1-week washout period. The mean (+/- SD) values of the standard deviation of R-R intervals were similar between conditions (control, 899.0 +/- 146.1 ms; low-CHO diet, 876.8 +/- 115.8 ms; and high-CHO diet, 878.7 +/- 127.7 ms). The absolute high-and low-frequency (HF and LF, respectively) densities of the HRV power spectrum were also not different between conditions. However, normalized HF and LF (i.e., relative to the total power spectrum) were lower and higher, respectively, in the low-CHO diet than in the control diet (mean +/- SD, 17 +/- 9 normalized units (NU) and 83 +/- 9 NU vs. 27 +/- 11 NU and 73 +/- 17 NU, respectively; p < 0.05). The LF/HF ratio was higher with the low-CHO diet than with the control diet (mean +/- SD, 7.2 +/- 6.2 and 4.2 +/- 3.2, respectively; p < 0.05). The mean values of plasma catecholamines were not different between diets. These results suggest that the autonomic control of the heart rate was modified after a short-term low-CHO diet, but plasma catecholamine levels were not altered.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of the present study was to compare and correlate training impulse (TRIMP) estimates proposed by Banister (TRIMP(Banister)), Stagno (TRIMP(Stagno)) and Manzi (TRIMP(Manzi)). The subjects were submitted to an incremental test on cycle ergometer with heart rate and blood lactate concentration measurements. In the second occasion, they performed 30 min. of exercise at the intensity corresponding to maximal lactate steady state, and TRIMP(Banister), TRIMP(Stagno) and TRIMP(Manzi) were calculated. The mean values of TRIMP(Banister) (56.5 +/- 8.2 u.a.) and TRIMP(Stagno) (51.2 +/- 12.4 u.a.) were not different (P > 0.05) and were highly correlated (r = 0.90). Besides this, they presented a good agreement level, which means low bias and relatively narrow limits of agreement. On the other hand, despite highly correlated (r = 0.93), TRIMP(Stagno) and TRIMP(Manzi) (73.4 +/- 17.6 u.a.) were different (P < 0.05), with low agreement level. The TRIMP(Banister) e TRIMP(Manzi) estimates were not different (P = 0.06) and were highly correlated (r = 0.82), but showed low agreement level. Thus, we concluded that the investigated TRIMP methods are not equivalent. In practical terms, it seems prudent monitor the training process assuming only one of the estimates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study compared measurements of upper body aerobic fitness in elite (EC; n = 7) and intermediate rock climbers (IC; n = 7), and a control group (C; n = 7). Subjects underwent an upper limb incremental test on hand cycle ergometer, with increments of 23 W.min(-1), until exhaustion. Ventilation (VE) data were smoothed to 10 s averages and plotted against time for the visual determination of the first (VT1) and second (VT2) ventilatory thresholds. Peak power output was not different among groups [EC = 130.9 (+/- 11.8) W; IC = 122.1 (+/- 28.4) W; C = 115.4 (+/- 15.1) W], but time to exhaustion was significantly higher in EC than IC and C. VO(2PEAK) was significantly higher in EC [36.8 (+/- 5.7) mL.kg(-1).min(-1)] and IC [35.5 (+/- 5.2) mL.kg(-1).min(-1)] than C [28.8 (+/- 5.0) mL.kg(-1).min(-1)], but there was no difference between EC and IC. VT1 was significantly higher in EC than C [EC = 69.0 (+/- 9.4) W; IC = 62.4 (+/- 13.0) W; C = 52.1 (+/- 11.8) W], but no significant difference was observed in VT2 [EC = 103.5 (+/- 18.8) W; IC = 92.0 (+/- 22.0) W; C = 85.6 (+/- 19.7) W]. These results show that elite indoor rock climbers elicit higher aerobic fitness profile than control subjects when measured with an upper body test.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Acute exercise increases energy expenditure (EE) during exercise and post-exercise recovery [excess post-exercise oxygen consumption (EPOC)] and therefore may be recommended as part of the multidisciplinary management of obesity. Moreover, chronic exercise (training) effectively promotes an increase in insulin sensitivity, which seems to be associated with increased fat oxidation rates (FORs). The main purpose of this thesis is to investigate 1) FORs and extra-muscular factors (hormones and plasma metabolites) that regulate fat metabolism during acute and chronic exercise; and 2) EPOC during acute post-exercise recovery in obese and severely obese men (class II and III). In the first study, we showed that obese and severely obese men present a lower exercise intensity (Fatmax) eliciting maximal fat oxidation and a lower reliance on fat oxidation at high, but not at low and moderate, exercise intensities compared to lean men. This was most likely related to an impaired muscular capacity to oxidize non-esterified fatty acids (NEFA) rather than decreased plasma NEFA availability or a change in the hormonal milieu during exercise. In the second study, we developed an accurate maximal incremental test to correctly and simultaneously evaluate aerobic fitness and fat oxidation kinetics during exercise in this population. This test may be used for the prescription of an appropriate exercise training intensity. In the third study, we demonstrated that only 2 wk of exercise training [continuous training at Fatmax and adapted high-intensity interval training (HIIT)], matched with respect to mechanical work, may be effective to improve aerobic fitness, FORs during exercise and insulin sensitivity, which suggest that FORs might be rapidly improved and that adapted HIIT is feasible in this population. The increased FORs concomitant with the lack of changes in lipolysis during exercise suggest an improvement in the mismatching between NEFA availability and oxidation, highlighting the importance of muscular (oxidative capacity) rather than extra-muscular (hormones and plasma metabolites) factors in the regulation of fat metabolism after a training program. In the fourth study, we observed a positive correlation between EE during exercise and EPOC, suggesting that a chronic increase in the volume or intensity of exercise may increase EE during exercise and during recovery. This may have an impact in weight management in obesity. In conclusion, these findings might have practical implications for exercise training prescriptions in order to improve the therapeutic approaches in obesity and severe obesity. -- L'exercice aigu augmente la dépense énergétique (DE) pendant l'exercice et la récupération post-exercice [excès de consommation d'oxygène post-exercise (EPOC)] et peut être utilisé dans la gestion multidisciplinaire de l'obésité. Quant à l'exercice chronique (entraînement), il est efficace pour augmenter la sensibilité à l'insuline, ce qui semble être associé à une amélioration du débit d'oxydation lipidique (DOL). Le but de cette thèse est d'étudier 1) le DOL et les facteurs extra-musculaires (hormones et métabolites plasmatiques) qui régulent le métabolisme lipidique pendant l'exercice aigu et chronique et 2) l'EPOC lors de la récupération aiguë post-exercice chez des hommes obèses et sévèrement obèses (classe II et III). Dans la première étude nous avons montré que les hommes obèses et sévèrement obèses présentent une plus basse intensité d'exercice (Fatmax) correspondant au débit d'oxydation lipidique maximale et un plus bas DOL à hautes, mais pas à faibles et modérées, intensités d'exercice comparé aux sujets normo-poids, ce qui est probablement lié à une incapacité musculaire à oxyder les acides gras non-estérifiés (AGNE) plutôt qu'à une diminution de leur disponibilité ou à un changement du milieu hormonal pendant l'exercice. Dans la deuxième étude nous avons développé un test maximal incrémental pour évaluer simultanément l'aptitude physique aérobie et la cinétique d'oxydation des lipides pendant l'exercice chez cette population. Dans la troisième étude nous avons montré que seulement deux semaines d'entraînement (continu à Fatmax et intermittent à haute intensité), appariés par la charge de travail, sont efficaces pour améliorer l'aptitude physique aérobie, le DOL pendant l'exercice et la sensibilité à l'insuline, ce qui suggère que le DOL peut être rapidement amélioré chez cette population. Ceci, en absence de changements de la lipolyse pendant l'exercice, suggère une amélioration de la balance entre la disponibilité et l'oxydation des AGNE, ce qui souligne l'importance des facteurs musculaires (capacité oxydative) plutôt que extra-musculaires (hormones et métabolites plasmatiques) dans la régulation du métabolisme lipidique après un entraînement. Dans la quatrième étude nous avons observé une corrélation positive entre la DE pendant l'exercice et l'EPOC, ce qui suggère qu'une augmentation chronique du volume ou de l'intensité de l'exercice pourrait augmenter la DE lors de l'exercice et lors de la récupération post-exercice. Ceci pourrait avoir un impact sur la gestion du poids chez cette population. En conclusion, ces résultats pourraient avoir des implications pratiques lors de la prescription des entraînements dans le but d'améliorer les approches thérapeutiques de l'obésité et de l'obésité sévère.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to compare O(2) uptake ((.)VO(2)) and muscle electromyography activity kinetics during moderate and severe exercise to test the hypothesis of progressive recruitment of fast-twitch fibers in the explanation of the VO(2) slow component. After an incremental test to exhaustion, 7 trained cyclists (mean +/- SD, 61.4 +/- 4.2 ml x min(-1) x kg(- 1)) performed several square-wave transitions for 6 min at moderate and severe intensities on a bicycle ergometer. The (.)VO(2) response and the electrical activity (i.e., median power frequency, MDF) of the quadriceps vastus lateralis and vastus medialis of both lower limbs were measured continuously during exercise. After 2 to 3 min of exercise onset, MDF values increased similarly during moderate and severe exercise for almost all muscles whereas a (.)VO(2) slow component occurred during severe exercise. There was no relationship between the increase of MDF values and the magnitude of the (.)VO(2) slow component during the severe exercise. These results suggest that the origin of the slow component may not be due to the progressive recruitment of fast-twitch fibers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Inconsistencies about dynamic asymmetry between the on- and off-transient responses in VO2 are found in the literature. Therefore the purpose of this study was to examine VO2 on- and off-transients during moderate- and heavy-intensity cycling exercise in trained subjects. Ten men underwent an initial incremental test for the estimation of ventilatory threshold (VT) and, on different days, two bouts of square-wave exercise at moderate (<VT) and heavy (>VT) intensities. VO2 kinetics in exercise and recovery were better described by a single exponential model (<VT), or by a double exponential with two time delays (>VT). For moderate exercise, we found a symmetry of VO2 kinetics between the on- and off-transients (i.e., fundamental component), consistent with a system manifesting linear control dynamics. For heavy exercise, a slow component superimposed on the fundamental phase was expressed in both the exercise and recovery, with similar parameter estimates. But the on-transient values of the time constant were appreciably faster than the associated off-transient, and independent of the work rate imposed (<VT and >VT). Our results do not support a dynamically linear system model of VO2 during cycling exercise in the heavy-intensity domain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Inconsistencies about dynamic asymmetry between the on- and off-transient responses in .VO2 are found in the literature. Therefore the purpose of this study was to examine .VO2on- and off-transients during moderate- and heavy-intensity cycling exercise in trained subjects. Ten men underwent an initial incremental test for the estimation of ventilatory threshold (VT) and, on different days, two bouts of square-wave exercise at moderate (<VT) and heavy (>VT) intensities. .VO2 kinetics in exercise and recovery were better described by a single exponential model (<VT) or by a double exponential with two time delays (>VT). For moderate exercise, we found a symmetry of .VO2 kinetics between the on- and off-transients (i.e., fundamental component), consistent with a system manifesting linear control dynamics. For heavy exercise, a slow component superimposed on the fundamental phase was expressed in both the exercise and recovery, with similar parameter estimates. But the on-transient values of the time constant were appreciably faster than the associated off-transient, and independent of the work rate imposed (<VT and >VT). Our results do not support a dynamically linear system model of .VO2 during cycling exercise in the heavy-intensity domain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction An impaired ability to oxidize fat may be a factor in the obesity's aetiology (3). Moreover, the exercise intensity (Fatmax) eliciting the maximal fat oxidation rate (MFO) was lower in obese (O) compared with lean (L) individuals (4). However, difference in fat oxidation rate (FOR) during exercise between O and L remains equivocal and little is known about FORs during high intensities (>60% ) in O compared with L. This study aimed to characterize fat oxidation kinetics over a large range of intensities in L and O. Methods 12 healthy L [body mass index (BMI): 22.8±0.4] and 16 healthy O men (BMI: 38.9±1.4) performed submaximal incremental test (Incr) to determine whole-body fat oxidation kinetics using indirect calorimetry. After a 15-min resting period (Rest) and 10-min warm-up at 20% of maximal power output (MPO, determined by a maximal incremental test), the power output was increased by 7.5% MPO every 6-min until respiratory exchange ratio reached 1.0. Venous lactate and glucose and plasma concentration of epinephrine (E), norepinephrine (NE), insulin and non-esterified fatty acid (NEFA) were assessed at each step. A mathematical model (SIN) (1), including three variables (dilatation, symmetry, translation), was used to characterize fat oxidation (normalized by fat-free mass) kinetics and to determine Fatmax and MFO. Results FOR at Rest and MFO were not significantly different between groups (p≥0.1). FORs were similar from 20-60% (p≥0.1) and significantly lower from 65-85% in O than in L (p≤0.04). Fatmax was significantly lower in O than in L (46.5±2.5 vs 56.7±1.9 % respectively; p=0.005). Fat oxidation kinetics was characterized by similar translation (p=0.2), significantly lower dilatation (p=0.001) and tended to a left-shift symmetry in O compared with L (p=0.09). Plasma E, insulin and NEFA were significantly higher in L compared to O (p≤0.04). There were no significant differences in glucose, lactate and plasma NE between groups (p≥0.2). Conclusion The study showed that O presented a lower Fatmax and a lower reliance on fat oxidation at high, but not at moderate, intensities. This may be linked to a: i) higher levels of insulin and lower E concentrations in O, which may induce blunted lipolysis; ii) higher percentage of type II and a lower percentage of type I fibres (5), and iii) decreased mitochondrial content (2), which may reduce FORs at high intensities and Fatmax. These findings may have implications for an appropriate exercise intensity prescription for optimize fat oxidation in O. References 1. Cheneviere et al. Med Sci Sports Exerc. 2009 2. Holloway et al. Am J Clin Nutr. 2009 3. Kelley et al. Am J Physiol. 1999 4. Perez-Martin et al. Diabetes Metab. 2001 5. Tanner et al. Am J Physiol Endocrinol Metab. 2002