918 resultados para High power lasers


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thermal resistance and thermal rise-time are two basic parameters that affect most of the performances of a laser diode greatly. By measuring waveforms received after a spectroscope at wavelengths varied step-by-step, the spectrally resolved waveforms can be converted to calculate the thermal rise-time. Basic formulas for the spectrum variation of a laser diode and the measurement set-up by using a Boxcar are described in the paper. As an example, the thermal rise-time of a p-side up packaged short-pulse laser diode was measured by the method to be 390 mu s. The method will be useful in characterizing diode lasers and LID modules in high-power applications. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Because of high efficiencies, compact structure, and excellent heat dissipation, high-power fiber lasers are extremely useful for applications such as cutting, welding, precision drilling, trimming, sensing, optical transmitter, material processing, micromachining, and so on. However, the wavefront of the double clad fiber laser doped with ytterbium is still unknown. In this paper, wavefront of a fiber laser is measured and the traditional Hartmann-shack wavefront sensing method is adopted. We measured a double clad fiber laser doped with ytterbium which produces pulse wave output at infrared wavelength. The wavefront shape and contour are reconstructed and the result shows that wavefront is slightly focused and not an ideal plane wavefront. Wavefront measurement of fiber laser will be useful to improving the lasers' performance and developing the coherent technique for its applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

While photovoltaics hold much promise as a sustainable electricity source, continued cost reduction is necessary to continue the current growth in deployment. A promising path to continuing to reduce total system cost is by increasing device efficiency. This thesis explores several silicon-based photovoltaic technologies with the potential to reach high power conversion efficiencies. Silicon microwire arrays, formed by joining millions of micron diameter wires together, were developed as a low cost, low efficiency solar technology. The feasibility of transitioning this to a high efficiency technology was explored. In order to achieve high efficiency, high quality silicon material must be used. Lifetimes and diffusion lengths in these wires were measured and the action of various surface passivation treatments studied. While long lifetimes were not achieved, strong inversion at the silicon / hydrofluoric acid interface was measured, which is important for understanding a common measurement used in solar materials characterization.

Cryogenic deep reactive ion etching was then explored as a method for fabricating high quality wires and improved lifetimes were measured. As another way to reach high efficiency, growth of silicon-germanium alloy wires was explored as a substrate for a III-V on Si tandem device. Patterned arrays of wires with up to 12% germanium incorporation were grown. This alloy is more closely lattice matched to GaP than silicon and allows for improvements in III-V integration on silicon.

Heterojunctions of silicon are another promising path towards achieving high efficiency devices. The GaP/Si heterointerface and properties of GaP grown on silicon were studied. Additionally, a substrate removal process was developed which allows the formation of high quality free standing GaP films and has wide applications in the field of optics.

Finally, the effect of defects at the interface of the amorphous silicon heterojuction cell was studied. Excellent voltages, and thus efficiencies, are achievable with this system, but the voltage is very sensitive to growth conditions. We directly measured lateral transport lengths at the heterointerface on the order of tens to hundreds of microns, which allows carriers to travel towards any defects that are present and recombine. This measurement adds to the understanding of these types of high efficiency devices and may aid in future device design.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

综述了双包层光纤激光器端面、侧面和集中抽运耦合技术,分析表明侧面抽运耦合技术比端面抽运耦合技术更有利于获得高功率输出,其中分布包层抽运耦合技术是很理想的一种侧面抽运耦合方式。阐述了高功率光纤激光器的特点并介绍了光子晶体光纤和螺旋芯光纤的抽运耦合方式。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

固体热容激光器(SSHCL)作为高功率固体激光器的一个重要发展方向,引起人们广泛关注。数值模拟激光介质板条在热容方式下工作的温度和应力分布是了解该类激光器工作特性的一种有效手段,采用平面应力近似法导出了半导体激光器抽运热容激光介质板的二维温度和应力分布公式,同时也对二维抽运光吸收密度、介质板温度分布和折射率变化进行了分析与讨论。数值计算的结果表明二维效应的温度分布和应力分布要比一维效应给出的分布更均匀。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

高平均功率固体激光器的增益介质由于受热而容易发生畸变,如常用材料YAG,波前畸变和去偏振现象会同时发生,高热负载固体激光介质的热效应已成为制约激光器输出功率进一步提高的严重障碍。给出一种计算热容型板条激光器热感生折射率的方法。把YAG晶体的四阶压光张量从晶胞坐标系转换到实验室坐标系,采用经过坐标转换后的新的张量,可以分析在YAG激光器中任意应力分布引起的热感应双折射。进一步的计算表明,在zigzag板条激光器中,应力双折射率与板条从晶体毛胚上切割成材的角度有关。同时也对热容板条激光器的热效应和应力特性进行了二维的理论性概述。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

板条激光器,特别是LD抽运的板条激光器,作为高功率同体激光器的一个重要发展方向,在军用和工业应用等领域有着较好的应用前景。综述了板条激光器的抽运、冷却方式以及谐振腔设计方面的进展,并对其应用前景进行展望。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

寄生振荡的存在使得放大器在信号光到达之前消耗了大量的反转粒子数,降低了放大器的激光增益和储能效率,严重地影响了激光放大器的性能,尤其对高功率激光放大器。在理论分析和实验研究的基础上,以Nd∶YAG晶体板条为例,用8条半导体激光阵列对晶体进行双侧抽运,研究了高功率激光放大器的寄生振荡现象,分析了板条晶体寄生振荡产生的原因,并详细比较了晶体在不同的抽运功率和表面处理下的放大效果,得到了2倍的单程放大,当输入能量为140 mJ时,获得了278 mJ的激光输出。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

介绍了固体板条激光器为了获得大功率和高光束质量而采用的新技术, 阐述了新一代大功率固体板条激光器的最新进展, 分析了新一代大功率固体板条激光器的技术特点, 并对其应用前景进行了展望。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

对多横模全固态激光器使用正交频率变换进行了分析,计算了频率转换效率与激光发散角的关系。使用双KTP晶体正交倍频的方法,对Nd∶YAG激光器输出的含有高阶横模的激光进行倍频实验研究。在1064 nm Nd∶YAG激光基波功率密度为121 MW/cm2时,其谐波转换效率达到75.5%。研究表明,对于光束质量较差的基波激光,采用正交频率变换的方式,适当选择晶体参数,同样可以获得较高效率的二次谐波输出。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

对高功率脉冲双包层光纤激光器的国内外研究进展进行评述,通过建立了小信号瞬态增益模型,对脉冲激光信号经过双包层光纤放大后的波形进行了数值模拟。分析了基于MOPA方式脉冲双包层光纤激光器的几个问题,报道了中科院上海光机所采用振荡-放大(MOPA)方法获得133.8W平均功率脉冲放大输出的实验结果。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

以短的高掺杂浓度的掺铥硅基光纤为增益介质,采用790 nm波长的激光二极管(LD)为抽运源,得到了波长为2 μm的高功率激光输出。当光纤长度为7 cm时,激光器的阈值泵浦功率为135 mW,最大输出功率为1.09 W,斜率效率为9.6%(相对于耦合进光纤的抽运功率)。该激光器的输出稳定性在5%以内。此外,我们还观察分析了工作温度和其他腔结构参量对该激光器工作性能的影响。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

文中报道了一台采用激光二极管部分边缘泵浦方式的高功率薄片激光器,晶体尺寸是1 mm×10 mm×60 mm。Cr4+:YAG被用来作为被动调Q晶体,在重复频率高于10kHz时,获得了脉宽10ns,平均功率70W,斜线效率为36\%的激光输出。通过控制泵浦光束直径的大小,我们在厚度方向得到了近似衍射极限的光束输出。整个激光器结构紧凑,大小为60 mm×174 mm×150 mm。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A high-power ytterbium-doped fiber laser (YDFL) with homemade double-clad fiber (DCF) is introduced in this letter. The geometric parameter and laser characteristics of the fiber have been studied. With one-end-pumping scheme, pumped by a high-power laser diode with launching power of 280 W, a maximum continuous wave (CW) output of 110 W is obtained with an optical-to-optical efficiency of 40%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A high-power Ytterbium-doped fiber laser (YDFL) with homemade double clad fiber (DCF) is introduced in this paper. The output power characteristics of a linear cavity fiber laser have been studied theoretically by solving the rate equations and experimentally tested with single- and double-end-pumping configurations. When both ends of the fiber are pumped by two high-power laser diodes with a launched power of similar to 300 W each, a maximum CW output of 444 W is obtained with a slope efficiency of similar to 75%. (c) 2006 Elsevier Ltd. All rights reserved.