979 resultados para Hand-drawn concept map
Resumo:
O presente trabalho integra-se no âmbito dos requisitos definidos na unidade curricular DIPRE que faz parte do 2º ano do Curso de Mestrado em Tecnologia e Gestão das Construções do Instituto Superior de Engenharia do Porto do Politécnico do Porto. Este trabalho consistiu na elaboração do projecto de estabilidade de um edifício de habitação multifamiliar, tendo-se também realizado uma análise comparativa de dois programas de cálculo estrutural. O trabalho foi subdividido em parte escrita e parte desenhada. Sendo a primeira constituída pelos seguintes capítulos: 1 – Memória descritiva e justificativa de cálculo 2 – Mapa de quantidades de trabalho e de materiais 3 – Estimativa orçamental 4 – Condições técnicas do projecto de fundações e estruturas A parte desenhada incluí 16 desenhos, representativos dos esquemas estruturais adoptados e dos pormenores construtivos dos elementos estruturais
Resumo:
Mestrado em Intervenção Sócio-Organizacional em Saúde - Ramo de especialização: Políticas de Administração e Gestão de Serviços de Saúde
Resumo:
Trabalho de projeto apresentado à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Audiovisual e Multimédia.
Resumo:
Dissertação apresentada à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Jornalismo.
Resumo:
Tese de doutoramento em Filosofia
Resumo:
Trabalho de projeto apresentado à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Publicidade e Marketing.
Resumo:
While the earliest deadline first algorithm is known to be optimal as a uniprocessor scheduling policy, the implementation comes at a cost in terms of complexity. Fixed taskpriority algorithms on the other hand have lower complexity but higher likelihood of task sets being declared unschedulable, when compared to earliest deadline first (EDF). Various attempts have been undertaken to increase the chances of proving a task set schedulable with similar low complexity. In some cases, this was achieved by modifying applications to limit preemptions, at the cost of flexibility. In this work, we explore several variants of a concept to limit interference by locking down the ready queue at certain instances. The aim is to increase the prospects of schedulability of a given task system, without compromising on complexity or flexibility, when compared to the regular fixed task-priority algorithm. As a final contribution, a new preemption threshold assignment algorithm is provided which is less complex and more straightforward than the previous method available in the literature.
Resumo:
When the Internet was born, the purpose was to interconnect computers to share digital data at large-scale. On the other hand, when embedded systems were born, the objective was to control system components under real-time constraints through sensing devices, typically at small to medium scales. With the great evolution of the Information and Communication Technology (ICT), the tendency is to enable ubiquitous and pervasive computing to control everything (physical processes and physical objects) anytime and at a large-scale. This new vision gave recently rise to the paradigm of Cyber-Physical Systems (CPS). In this position paper, we provide a realistic vision to the concept of the Cyber-Physical Internet (CPI), discuss its design requirements and present the limitations of the current networking abstractions to fulfill these requirements. We also debate whether it is more productive to adopt a system integration approach or a radical design approach for building large-scale CPS. Finally, we present a sample of realtime challenges that must be considered in the design of the Cyber-Physical Internet.
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Automação e Electrónica Industrial
Resumo:
The foresight and scenario building methods can be an interesting reference for social sciences, especially in terms of innovative methods for labour process analysis. A scenario – as a central concept for the prospective analysis – can be considered as a rich and detailed portrait of a plausible future world. It can be a useful tool for policy-makers to grasp problems clearly and comprehensively, and to better pinpoint challenges as well as opportunities in an overall framework. The features of the foresight methods are being used in some labour policy making experiences. Case studies developed in Portugal will be presented, and some conclusions will be drawn in order to organise a set of principles for foresight analysis applied to the European project WORKS on the work organisation re-structuring in the knowledge society, and on the work design methods for new management structures of virtual organisations.
Resumo:
Banks that has introduced CRM system, had to make some difficult changes in their organization in order to become more customer oriented. Beside the pure CRM banks try to adopt other innovative tools related with the core CRM. Some of these solutions are constructed in such a way so that ensured could be also access to the information beside to bank’s organization.
Resumo:
This Thesis describes the application of automatic learning methods for a) the classification of organic and metabolic reactions, and b) the mapping of Potential Energy Surfaces(PES). The classification of reactions was approached with two distinct methodologies: a representation of chemical reactions based on NMR data, and a representation of chemical reactions from the reaction equation based on the physico-chemical and topological features of chemical bonds. NMR-based classification of photochemical and enzymatic reactions. Photochemical and metabolic reactions were classified by Kohonen Self-Organizing Maps (Kohonen SOMs) and Random Forests (RFs) taking as input the difference between the 1H NMR spectra of the products and the reactants. The development of such a representation can be applied in automatic analysis of changes in the 1H NMR spectrum of a mixture and their interpretation in terms of the chemical reactions taking place. Examples of possible applications are the monitoring of reaction processes, evaluation of the stability of chemicals, or even the interpretation of metabonomic data. A Kohonen SOM trained with a data set of metabolic reactions catalysed by transferases was able to correctly classify 75% of an independent test set in terms of the EC number subclass. Random Forests improved the correct predictions to 79%. With photochemical reactions classified into 7 groups, an independent test set was classified with 86-93% accuracy. The data set of photochemical reactions was also used to simulate mixtures with two reactions occurring simultaneously. Kohonen SOMs and Feed-Forward Neural Networks (FFNNs) were trained to classify the reactions occurring in a mixture based on the 1H NMR spectra of the products and reactants. Kohonen SOMs allowed the correct assignment of 53-63% of the mixtures (in a test set). Counter-Propagation Neural Networks (CPNNs) gave origin to similar results. The use of supervised learning techniques allowed an improvement in the results. They were improved to 77% of correct assignments when an ensemble of ten FFNNs were used and to 80% when Random Forests were used. This study was performed with NMR data simulated from the molecular structure by the SPINUS program. In the design of one test set, simulated data was combined with experimental data. The results support the proposal of linking databases of chemical reactions to experimental or simulated NMR data for automatic classification of reactions and mixtures of reactions. Genome-scale classification of enzymatic reactions from their reaction equation. The MOLMAP descriptor relies on a Kohonen SOM that defines types of bonds on the basis of their physico-chemical and topological properties. The MOLMAP descriptor of a molecule represents the types of bonds available in that molecule. The MOLMAP descriptor of a reaction is defined as the difference between the MOLMAPs of the products and the reactants, and numerically encodes the pattern of bonds that are broken, changed, and made during a chemical reaction. The automatic perception of chemical similarities between metabolic reactions is required for a variety of applications ranging from the computer validation of classification systems, genome-scale reconstruction (or comparison) of metabolic pathways, to the classification of enzymatic mechanisms. Catalytic functions of proteins are generally described by the EC numbers that are simultaneously employed as identifiers of reactions, enzymes, and enzyme genes, thus linking metabolic and genomic information. Different methods should be available to automatically compare metabolic reactions and for the automatic assignment of EC numbers to reactions still not officially classified. In this study, the genome-scale data set of enzymatic reactions available in the KEGG database was encoded by the MOLMAP descriptors, and was submitted to Kohonen SOMs to compare the resulting map with the official EC number classification, to explore the possibility of predicting EC numbers from the reaction equation, and to assess the internal consistency of the EC classification at the class level. A general agreement with the EC classification was observed, i.e. a relationship between the similarity of MOLMAPs and the similarity of EC numbers. At the same time, MOLMAPs were able to discriminate between EC sub-subclasses. EC numbers could be assigned at the class, subclass, and sub-subclass levels with accuracies up to 92%, 80%, and 70% for independent test sets. The correspondence between chemical similarity of metabolic reactions and their MOLMAP descriptors was applied to the identification of a number of reactions mapped into the same neuron but belonging to different EC classes, which demonstrated the ability of the MOLMAP/SOM approach to verify the internal consistency of classifications in databases of metabolic reactions. RFs were also used to assign the four levels of the EC hierarchy from the reaction equation. EC numbers were correctly assigned in 95%, 90%, 85% and 86% of the cases (for independent test sets) at the class, subclass, sub-subclass and full EC number level,respectively. Experiments for the classification of reactions from the main reactants and products were performed with RFs - EC numbers were assigned at the class, subclass and sub-subclass level with accuracies of 78%, 74% and 63%, respectively. In the course of the experiments with metabolic reactions we suggested that the MOLMAP / SOM concept could be extended to the representation of other levels of metabolic information such as metabolic pathways. Following the MOLMAP idea, the pattern of neurons activated by the reactions of a metabolic pathway is a representation of the reactions involved in that pathway - a descriptor of the metabolic pathway. This reasoning enabled the comparison of different pathways, the automatic classification of pathways, and a classification of organisms based on their biochemical machinery. The three levels of classification (from bonds to metabolic pathways) allowed to map and perceive chemical similarities between metabolic pathways even for pathways of different types of metabolism and pathways that do not share similarities in terms of EC numbers. Mapping of PES by neural networks (NNs). In a first series of experiments, ensembles of Feed-Forward NNs (EnsFFNNs) and Associative Neural Networks (ASNNs) were trained to reproduce PES represented by the Lennard-Jones (LJ) analytical potential function. The accuracy of the method was assessed by comparing the results of molecular dynamics simulations (thermal, structural, and dynamic properties) obtained from the NNs-PES and from the LJ function. The results indicated that for LJ-type potentials, NNs can be trained to generate accurate PES to be used in molecular simulations. EnsFFNNs and ASNNs gave better results than single FFNNs. A remarkable ability of the NNs models to interpolate between distant curves and accurately reproduce potentials to be used in molecular simulations is shown. The purpose of the first study was to systematically analyse the accuracy of different NNs. Our main motivation, however, is reflected in the next study: the mapping of multidimensional PES by NNs to simulate, by Molecular Dynamics or Monte Carlo, the adsorption and self-assembly of solvated organic molecules on noble-metal electrodes. Indeed, for such complex and heterogeneous systems the development of suitable analytical functions that fit quantum mechanical interaction energies is a non-trivial or even impossible task. The data consisted of energy values, from Density Functional Theory (DFT) calculations, at different distances, for several molecular orientations and three electrode adsorption sites. The results indicate that NNs require a data set large enough to cover well the diversity of possible interaction sites, distances, and orientations. NNs trained with such data sets can perform equally well or even better than analytical functions. Therefore, they can be used in molecular simulations, particularly for the ethanol/Au (111) interface which is the case studied in the present Thesis. Once properly trained, the networks are able to produce, as output, any required number of energy points for accurate interpolations.
Resumo:
Emergent architectures and paradigms targeting reconfigurable manufacturing systems increasingly rely on intelligent modules to maximize the robustness and responsiveness of modern installations. Although intelligent behaviour significantly minimizes the occurrence of faults and breakdowns it does not exclude them nor can prevent equipment’s normal wear. Adequate maintenance is fundamental to extend equipments’ life cycle. It is of major importance the ability of each intelligent device to take an active role in maintenance support. Further this paradigm shift towards “embedded intelligence”, supported by cross platform technologies, induces relevant organizational and functional changes on local maintenance teams. On the one hand, the possibility of outsourcing maintenance activities, with the warranty of a timely response, through the use of pervasive networking technologies and, on the other hand, the optimization of local maintenance staff are some examples of how IT is changing the scenario in maintenance. The concept of e-maintenance is, in this context, emerging as a new discipline with defined socio-economic challenges. This paper proposes a high level maintenance architecture supporting maintenance teams’ management and offering contextualized operational support. All the functionalities hosted by the architecture are offered to the remaining system as network services. Any intelligent module, implementing the services’ interface, can report diagnostic, prognostic and maintenance recommendations that enable the core of the platform to decide on the best course of action.
Resumo:
In practice the robotic manipulators present some degree of unwanted vibrations. The advent of lightweight arm manipulators, mainly in the aerospace industry, where weight is an important issue, leads to the problem of intense vibrations. On the other hand, robots interacting with the environment often generate impacts that propagate through the mechanical structure and produce also vibrations. In order to analyze these phenomena a robot signal acquisition system was developed. The manipulator motion produces vibrations, either from the structural modes or from endeffector impacts. The instrumentation system acquires signals from several sensors that capture the joint positions, mass accelerations, forces and moments, and electrical currents in the motors. Afterwards, an analysis package, running off-line, reads the data recorded by the acquisition system and extracts the signal characteristics. Due to the multiplicity of sensors, the data obtained can be redundant because the same type of information may be seen by two or more sensors. Because of the price of the sensors, this aspect can be considered in order to reduce the cost of the system. On the other hand, the placement of the sensors is an important issue in order to obtain the suitable signals of the vibration phenomenon. Moreover, the study of these issues can help in the design optimization of the acquisition system. In this line of thought a sensor classification scheme is presented. Several authors have addressed the subject of the sensor classification scheme. White (White, 1987) presents a flexible and comprehensive categorizing scheme that is useful for describing and comparing sensors. The author organizes the sensors according to several aspects: measurands, technological aspects, detection means, conversion phenomena, sensor materials and fields of application. Michahelles and Schiele (Michahelles & Schiele, 2003) systematize the use of sensor technology. They identified several dimensions of sensing that represent the sensing goals for physical interaction. A conceptual framework is introduced that allows categorizing existing sensors and evaluates their utility in various applications. This framework not only guides application designers for choosing meaningful sensor subsets, but also can inspire new systems and leads to the evaluation of existing applications. Today’s technology offers a wide variety of sensors. In order to use all the data from the diversity of sensors a framework of integration is needed. Sensor fusion, fuzzy logic, and neural networks are often mentioned when dealing with problem of combing information from several sensors to get a more general picture of a given situation. The study of data fusion has been receiving considerable attention (Esteban et al., 2005; Luo & Kay, 1990). A survey of the state of the art in sensor fusion for robotics can be found in (Hackett & Shah, 1990). Henderson and Shilcrat (Henderson & Shilcrat, 1984) introduced the concept of logic sensor that defines an abstract specification of the sensors to integrate in a multisensor system. The recent developments of micro electro mechanical sensors (MEMS) with unwired communication capabilities allow a sensor network with interesting capacity. This technology was applied in several applications (Arampatzis & Manesis, 2005), including robotics. Cheekiralla and Engels (Cheekiralla & Engels, 2005) propose a classification of the unwired sensor networks according to its functionalities and properties. This paper presents a development of a sensor classification scheme based on the frequency spectrum of the signals and on a statistical metrics. Bearing these ideas in mind, this paper is organized as follows. Section 2 describes briefly the robotic system enhanced with the instrumentation setup. Section 3 presents the experimental results. Finally, section 4 draws the main conclusions and points out future work.
Resumo:
This paper addresses the problem of finding several different solutions with the same optimum performance in single objective real-world engineering problems. In this paper a parallel robot design is proposed. Thereby, this paper presents a genetic algorithm to optimize uni-objective problems with an infinite number of optimal solutions. The algorithm uses the maximin concept and ε-dominance to promote diversity over the admissible space. The performance of the proposed algorithm is analyzed with three well-known test functions and a function obtained from practical real-world engineering optimization problems. A spreading analysis is performed showing that the solutions drawn by the algorithm are well dispersed.