901 resultados para HIGH-FIELD STRENGTH


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Broadband neat-infrared emission from transparent Ni2+-doped sodium aluminosilicate glass-cermaics is observed. The broad emission is centered at 1290 nm and covers the whole telecommunication wavelength region (1100-1700 nm) with full width at half maximum of about 340 nm. The observed infrared emission could be attributed to the T-3(2)(F) -> (3)A(2)(F) transition of octahedral Ni2+ ions that occupy high-field sites in nanocrystals. The product of the lifetime and the stimulated emission cross section is 2.15 x 10(-24) cm(2)s. It is suggested that Ni2+-doped sodium aluminosilicate glass ceramics have potential applications in tunable broadband light sources and broadband amplifiers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transparent polycrystalline Cr:Al2O3 ceramics were synthesized by conventional pressureless synthesis processing. The absorption and emission spectra of Cr:Al2O3 ceramics specimens before and after annealing were measured at room temperature. It was discovered that the emission spectra of Cr4+ in Al2O3 octahedral coordination site is in infrared wavelength range of 1100-1600 nm. The emission peak of Cr4+ is centered at 1223 nm, which is similar to that of Cr4+ in tetrahedral site. Al2O3 has smaller lattice constant, resulting in the larger crystal field strength, so there is a blue shift in the peak of Cr4+:Al2O3 ceramics compared to those of other Cr4+-doped crystals. And the emission band is much narrower with full width at half maximum Delta lambda 37 nm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

研究了La2O3对Yb:Y2O3透明陶瓷光谱性能的影响,添加适量La2O3以后,Yb:Y2O3透明陶瓷的吸收峰和发射峰的位置不变,但由于La^3+的离子半径大于Y^3+的离子半径,在Y2O3中引入La^3+离子后,导致Y2O3晶格常数变大,晶场强度变弱,同时降低了Y2O3晶体的有序度,致使发射峰强度有所下降,发射截面变小.过量的№La2O3(x=0.16)造成yb^3+激活离子发射强度明显下降;其荧光寿命在添加La2O3后总体增大45%-60%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neste trabalho foram estudadas as propriedades estruturais e termomagnéticas dos pseudobinários Ho1-yGdyAl2, através de abordagens experimentais e teóricas. A parte experimental envolveu a preparação de cinco amostras, com as concentrações y = 0, 0,25, 0,5, 0,75 e 1, assim como medidas de magnetização, calor especifico e da variação adiabática da temperatura. Na parte teórica usamos um hamiltoniano modelo que leva em consideração a interação dos íons com o campo magnético aplicado, com o campo elétrico cristalino e a troca entre os íons magnéticos. A entropia da rede foi considerada na aproximação de Debye e a entropia eletrônica na aproximação do gás de elétrons livres. A influência das reorientações de spin, espontâneas e induzidas pelo campo magnético, na magnetização e no calor especifico foram investigadas sistematicamente tanto a partir de dados experimentais quanto teoricamente. Também obtemos resultados teóricos para a variação de entropia e variação adiabática da temperatura alterando a intensidade ou a direção do campo magnético.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) are known to exhibit extraordinary mechanical properties such as high tensile strength, the highest Young modulus etc. These, combining with their large aspect ratio, make CNTs an excellent additive candidate to complement or substitute traditional carbon black or glass fiber fillers for the development of nano-reinforced composites. CNTs have thus far been used as additives in polymers, ceramics and metals to be pursued on practical applications of their composites. © 2010 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High Temperature superconductors are able to carry very high current densities, and thereby sustain very high magnetic fields. There are many projects which use the first property and these have concentrated on power generation, transmission and utilization, however there are relatively few which are currently exploiting the ability to sustain high magnetic fields. There are two main reasons for this: high field wound magnets can and have been made from both BSCCO and YBCO but currently their cost is much higher than the alternative provided by low Tc materials such as Nb3Sn and NbTi. An alternative form of the material is the bulk form which can be magnetized to high fields and using flux pumping this can be done in situ. This paper explores some of the applications of bulk superconductors and describes methods of producing field patterns using the highly uniform magnetic fields required for MRI and accelerator magnets as the frame of reference. The patterns are not limited to uniform fields and it is entirely possible to produce a field varying sinusoidally in space such as would be required for a motor or a generator. The scheme described in this paper describes a dipole magnet such as is found in an accelerator magnet. The tunnel is 30 × 50 × 1000 mm and we achieve a uniformity of better than 200 ppm over the 1000 mm length and better than 1 ppm over the central 500 mm region. The paper presents results for both the overall uniformity and the integrated uniformity which is 302 ppm over the 1000 mm length. © 2010 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have investigated the magnetization reversal process of a single chain of identical nanomagnetic dots fabricated from 30 nm thick Ni 80Fe20. The structures consist of two 5 μm wide support wires bridged with a single chain of identical dots of diameter δ in the range 100-250 nm. For fields applied perpendicular to the single chain, we observed an unusual size dependent hysteretic behavior in the magnetoresistance curve at high field. This is due to the magnetostatic interaction arising from the proximity of the magnetic charges. We are able to deduce from a simple micromagnetic simulation that the reversal process in the chain of dots with δ=100nm is mediated by a collective process of nearly coherent spin rotation. The magnetotransport measurements along the chain reveal a complex magnetization reversal process in the chain of nanomagnets. © 2002 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Humans are able to stabilize their movements in environments with unstable dynamics by selectively modifying arm impedance independently of force and torque. We further investigated adaptation to unstable dynamics to determine whether the CNS maintains a constant overall level of stability as the instability of the environmental dynamics is varied. Subjects performed reaching movements in unstable force fields of varying strength, generated by a robotic manipulator. Although the force fields disrupted the initial movements, subjects were able to adapt to the novel dynamics and learned to produce straight trajectories. After adaptation, the endpoint stiffness of the arm was measured at the midpoint of the movement. The stiffness had been selectively modified in the direction of the instability. The stiffness in the stable direction was relatively unchanged from that measured during movements in a null force field prior to exposure to the unstable force field. This impedance modification was achieved without changes in force and torque. The overall stiffness of the arm and environment in the direction of instability was adapted to the force field strength such that it remained equivalent to that of the null force field. This suggests that the CNS attempts both to maintain a minimum level of stability and minimize energy expenditure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An innovative approach for fabricating pillar arrays for ultrasonic transducer applications is disclosed. It involves the preparation of concentrated piezoelectric lead zirconate titanate (PZT) suspensions in aqueous solutions of epoxy resin and its polymerization upon adding a polyamine based hardener. Zeta potential and rheological measurements revealed that 1wt.% dispersant, 20wt.% of epoxy resin and a hardener/epoxy resin ratio of 0.275mLg -1, were the optimized contents to obtain strong PZT samples with high green strength (35.21±0.39MPa). Excellent ellipsoidal and semi-circle shaped pillar arrays presenting lateral dimensions lower than 10μm and 100μm height were successfully achieved. The organics burning off was conducted at 500°C for 2h at a heating rate of 1°Cmin -1. Sintering was then carried out in the same heating cycle at 1200°C for 1h. The microstructures of the green and sintered ceramics were homogeneous and no large defects could be detected. © 2011 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An assessment of the underwater blast resistance of sandwich beams with a prismatic Y-truss core is presented, utilizing three-dimensional finite element calculations. Results show a significant performance benefit for sandwich construction when compared to a monolithic plate of the same mass when the sandwich core combines high shear strength with low compressive strength.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Light metal sandwich panel structures with cellular cores have attracted interest for multifunctional applications which exploit their high bend strength and impact energy absorption. This concept has been explored here using a model 6061-T6 aluminum alloy system fabricated by friction stir weld joining extruded sandwich panels with a triangular corrugated core. Micro-hardness and miniature tensile coupon testing revealed that friction stir welding reduced the strength and ductility in the welds and a narrow heat affected zone on either side of the weld by approximately 30%. Square, edge clamped sandwich panels and solid plates of equal mass per unit area were subjected to localized impulsive loading by the impact of explosively accelerated, water saturated, sand shells. The hydrodynamic load and impulse applied by the sand were gradually increased by reducing the stand-off distance between the test charge and panel surfaces. The sandwich panels suffered global bending and stretching, and localized core crushing. As the pressure applied by the sand increased, face sheet fracture by a combination of tensile stretching and shear-off occurred first at the two clamped edges of the panels that were parallel with the corrugation and weld direction. The plane of these fractures always lay within the heat affected zone of the longitudinal welds. For the most intensively loaded panels additional cracks occurred at the other clamped boundaries and in the center of the panel. To investigate the dynamic deformation and fracture processes, a particle-based method has been used to simulate the impulsive loading of the panels. This has been combined with a finite element analysis utilizing a modified Johnson-Cook constitutive relation and a Cockcroft-Latham fracture criterion that accounted for local variation in material properties. The fully coupled simulation approach enabled the relationships between the soil-explosive test charge design, panel geometry, spatially varying material properties and the panel's deformation and dynamic failure responses to be explored. This comprehensive study reveals the existence of a strong instability in the loading that results from changes in sand particle reflection during dynamic evolution of the panel's surface topology. Significant fluid-structure interaction effects are also discovered at the sample sides and corners due to changes of the sand reflection angle by the edge clamping system. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Superconductors have a bright future; they are able to carry very high current densities, switch rapidly in electronic circuits, detect extremely small perturbations in magnetic fields, and sustain very high magnetic fields. Of most interest to large-scale electrical engineering applications are the ability to carry large currents and to provide large magnetic fields. There are many projects that use the first property, and these have concentrated on power generation, transmission, and utilization; however, there are relatively few, which are currently exploiting the ability to sustain high magnetic fields. The main reason for this is that high field wound magnets can and have been made from both BSCCO and YBCO, but currently, their cost is much higher than the alternative provided by low-Tc materials such as Nb3Sn and NbTi. An alternative form of the material is the bulk form, which can be magnetized to high fields. This paper explains the mechanism, which allows superconductors to be magnetized without the need for high field magnets to perform magnetization. A finite-element model is presented, which is based on the E-J current law. Results from this model show how magnetization of the superconductor builds up cycle upon cycle when a traveling magnetic wave is induced above the superconductor. © 2011 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bulk, polycrystalline MgB2 samples containing 2.5 wt.% multi-walled carbon nanotubes (CNTs) have been prepared by conventional solid state reaction at 800 °C. The effect of Mg precursor powders composed of two different particle sizes on the critical current density (Jc) of the as-sintered samples has been investigated. An enhancement of Jc at high field has been observed in MgB2 samples containing CNTs prepared with fine Mg powders, whereas the values of Jc in the sample prepared using the coarser Mg powders was slightly decreased. These results contrast significantly with measurements on pure, undoped, MgB2 samples prepared from the same Mg precursor powders. They suggest that carbon substitution into the MgB2 lattice, which accounts for increased flux pinning, and therefore Jc, is more effective in precursor Mg powders with a larger surface area. Rather surprisingly, the so-called fishtail effect, observed typically in MgB2 single crystals and in the (RE)BCO family of high temperature superconductors (HTSs), was observed in both sets of CNT-containing polycrystalline samples as a result of lattice defects associated with C substitution. Significantly, analytical fits to the data for each sample suggest that the same flux pinning mechanism accounts for the fishtail effect in polycrystalline MgB2 and (RE)BCO. © 2013 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of long-length, high current density Bi2Sr 2CaCu2Ox wires and (RE)Ba2Cu 3Oy coated conductors has now advanced such that superconducting magnets for energy applications and high field applications are progressing rapidly. Europe, along with China, Korea the US and Japan is an important player in the development and exploitation of High Temperature Superconductors in practical applications. © 2013 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Physical connection and disconnection control has practical meanings for robot applications. Compared to conventional connection mechanisms, bonding involving a thermal process could provide high connection strength, high repeatability, and power-free connection maintenance, etc. In terms of disconnection, an established bond can be easily weakened with a temperature rise of the material used to form the bond. Hot melt adhesives (HMAs) are such material that can form adhesive bonds with any solid surfaces through a thermally induced solidification process. This paper proposes a novel control method for automatic connection and disconnection based on HMAs. More specifically, mathematical models are first established to describe the flowing behavior of HMAs at higher temperatures, as well as the temperature-dependent strength of an established HMA bond. These models are then validated with a specific type of HMA in a minimalistic robot setup equipped with two mechatronic devices for automated material handling. The validated models are eventually used for determining open parameters in a feedback controller for the robot to perform a pick-and-place task. Through a series of trials with different wooden and aluminum parts, we evaluate the performance of the automatic connection and disconnection methods in terms of speed, energy consumption, and robustness. © 1996-2012 IEEE.