836 resultados para GIBBS FORMALISM
Resumo:
The fundaments of the modern Density Functional Theory (DFT), its basic theorems, principles and methodology are presented. This review also discuss important and widely used concepts in chemistry but that had not been precisely defined until the development of the DFT. These concepts were proposed and used from an empirical base, but now their precise definition are well established in the DFT formalism. Concepts such as chemical potential (electronegativity), hardness, softness and Fukui function are presented and their consequences to the understanding of chemical reactivity are discussed.
Resumo:
Conservation laws in physics are numerical invariants of the dynamics of a system. In cellular automata (CA), a similar concept has already been defined and studied. To each local pattern of cell states a real value is associated, interpreted as the “energy” (or “mass”, or . . . ) of that pattern.The overall “energy” of a configuration is simply the sum of the energy of the local patterns appearing on different positions in the configuration. We have a conservation law for that energy, if the total energy of each configuration remains constant during the evolution of the CA. For a given conservation law, it is desirable to find microscopic explanations for the dynamics of the conserved energy in terms of flows of energy from one region toward another. Often, it happens that the energy values are from non-negative integers, and are interpreted as the number of “particles” distributed on a configuration. In such cases, it is conjectured that one can always provide a microscopic explanation for the conservation laws by prescribing rules for the local movement of the particles. The onedimensional case has already been solved by Fuk´s and Pivato. We extend this to two-dimensional cellular automata with radius-0,5 neighborhood on the square lattice. We then consider conservation laws in which the energy values are chosen from a commutative group or semigroup. In this case, the class of all conservation laws for a CA form a partially ordered hierarchy. We study the structure of this hierarchy and prove some basic facts about it. Although the local properties of this hierarchy (at least in the group-valued case) are tractable, its global properties turn out to be algorithmically inaccessible. In particular, we prove that it is undecidable whether this hierarchy is trivial (i.e., if the CA has any non-trivial conservation law at all) or unbounded. We point out some interconnections between the structure of this hierarchy and the dynamical properties of the CA. We show that positively expansive CA do not have non-trivial conservation laws. We also investigate a curious relationship between conservation laws and invariant Gibbs measures in reversible and surjective CA. Gibbs measures are known to coincide with the equilibrium states of a lattice system defined in terms of a Hamiltonian. For reversible cellular automata, each conserved quantity may play the role of a Hamiltonian, and provides a Gibbs measure (or a set of Gibbs measures, in case of phase multiplicity) that is invariant. Conversely, every invariant Gibbs measure provides a conservation law for the CA. For surjective CA, the former statement also follows (in a slightly different form) from the variational characterization of the Gibbs measures. For one-dimensional surjective CA, we show that each invariant Gibbs measure provides a conservation law. We also prove that surjective CA almost surely preserve the average information content per cell with respect to any probability measure.
Resumo:
Internal energy dependence of the competitive unimolecular dissociation channels of dimethyl ether were studied with the statistical RRKM formalism. The C-O and C-H fission reactions and the 1,2-H and 1,3-H shifts, and 1,1-H2 and 1,3-H2 molecular eliminations are discussed as a function of energy dependence of k a(E*), the microcanonical rate constant for production of transition states. C-O fission is the dominant process while reaction channels involving C-H fission, 1,1-H2 and 1,3-H2 elimination and production of MeOH should be competitive at energies around 400 kJ mol-1. The less favorable process is the channel of CH4 formation.
Resumo:
The synthesis of layered double hydroxides (LDHs) by hydrothermal-LDH reconstruction and coprecipitation methods is reviewed using a thermodynamic approach. A mixture model was used for the estimation of the thermodynamics of formation of LDHs. The synthesis and solubility of LDHs are discussed in terms of standard molar Gibbs free energy change of reaction. Data for numerous divalent and trivalent metals as well as for some monovalent and tetravalent metals that may be part of the LDH structure have been compiled. Good agreement is found between theoretical and experimental data. Diagrams and tables for the prediction of possible new LDH materials are provided.
Resumo:
Social, technological, and economic time series are divided by events which are usually assumed to be random, albeit with some hierarchical structure. It is well known that the interevent statistics observed in these contexts differs from the Poissonian profile by being long-tailed distributed with resting and active periods interwoven. Understanding mechanisms generating consistent statistics has therefore become a central issue. The approach we present is taken from the continuous-time random-walk formalism and represents an analytical alternative to models of nontrivial priority that have been recently proposed. Our analysis also goes one step further by looking at the multifractal structure of the interevent times of human decisions. We here analyze the intertransaction time intervals of several financial markets. We observe that empirical data describe a subtle multifractal behavior. Our model explains this structure by taking the pausing-time density in the form of a superstatistics where the integral kernel quantifies the heterogeneous nature of the executed tasks. A stretched exponential kernel provides a multifractal profile valid for a certain limited range. A suggested heuristic analytical profile is capable of covering a broader region.
Resumo:
The adsorption capacity of alpha-chitosan and its modified form with succinic anhydride was compared with the traditional adsorbent active carbon by using the dye methylene blue, employed in the textile industry. The isotherms for both biopolymers were classified as SSA systems in the Giles model, more specifically in L class and subgroup 3. The dye concentration in the supernatant in the adsorption assay was determined through electronic spectroscopy. By calorimetric titration thermodynamic data of the interaction between methyene blue and the chemically modified chitosan at the solid/liquid interface were obtained. The enthalpy of the dye/chitosan interaction gave 2.47 ± 0.02 kJ mol-1 with an equilibrium constant of 7350 ± 10 and for the carbon/dye interaction this constant gave 5951 ± 8. The spontaneity of these adsorptions are reflected by the free Gibbs energies of -22.1 ± 0.4 and -21.5 ± 0.2 kJ mol-1, respectively, found for these systems. This new adsorbent derived from a natural polysaccharide is as efficient as activated carbon. However 97% of the bonded dye can be eluted by sodium chloride solution, while this same operation elutes only 42% from carbon. Chitosan is efficient in dye removal with the additional advantage of being cheap, non-toxic, biocompatible and biodegradable.
Resumo:
The main subject of this article is to show the parallelism betwen the Ellingham and Van't Hoff diagrams. The first one is a graphic representation of the changes in the standard Gibbs free energy (deltarGtheta) as a function of T and was introduced by Ellingham in 1944, in order to study metallurgic processes involving oxides and sulphides. On the other hand, the Van't Hoff diagram is a representation of the function ln K versus (1/T). The equivalence between both diagrams is easily demonstrated, making simple mathematical manipulations. In order to show the parallelism between both diagrams, they are presented briefly and two examples are discussed. The comparison of the both diagrams surely will be helpful to students and teachers in their learning and teaching activities, and will certainly enrich important aspects of chemical thermodynamics.
Resumo:
The deviations observed in the solubility of ibuprofen (IBP) and naproxen (NAP) in propylene glycol (PG) + water (W) cosolvent mixtures with respect to the logarithmic-linear model proposed by Yalkowsky have been analyzed at 25.00 ± 0.05 ºC. Negative deviations were obtained in all cosolvent compositions for both drugs; they were greater for IBP. Another treatment, based on Gibbs free energy relationships, was also employed showing an apparent hydrophobicity chameleonic effect, because at low PG proportions NAP is more hydrophobic, whereas at high PG proportions IBP is more hydrophobic. The results are discussed in terms of solute-solvent and solvent-solvent interactions.
Resumo:
The design methods and languages targeted to modern System-on-Chip designs are facing tremendous pressure of the ever-increasing complexity, power, and speed requirements. To estimate any of these three metrics, there is a trade-off between accuracy and abstraction level of detail in which a system under design is analyzed. The more detailed the description, the more accurate the simulation will be, but, on the other hand, the more time consuming it will be. Moreover, a designer wants to make decisions as early as possible in the design flow to avoid costly design backtracking. To answer the challenges posed upon System-on-chip designs, this thesis introduces a formal, power aware framework, its development methods, and methods to constraint and analyze power consumption of the system under design. This thesis discusses on power analysis of synchronous and asynchronous systems not forgetting the communication aspects of these systems. The presented framework is built upon the Timed Action System formalism, which offer an environment to analyze and constraint the functional and temporal behavior of the system at high abstraction level. Furthermore, due to the complexity of System-on-Chip designs, the possibility to abstract unnecessary implementation details at higher abstraction levels is an essential part of the introduced design framework. With the encapsulation and abstraction techniques incorporated with the procedure based communication allows a designer to use the presented power aware framework in modeling these large scale systems. The introduced techniques also enable one to subdivide the development of communication and computation into own tasks. This property is taken into account in the power analysis part as well. Furthermore, the presented framework is developed in a way that it can be used throughout the design project. In other words, a designer is able to model and analyze systems from an abstract specification down to an implementable specification.
Resumo:
This article intends to answer the question: "what is the best way to evaluate the strength of acids and bases?" The meaning of the word strength, the main acid-base theories (ionotropic and electron pair), the neutralization reactions and the thermodynamical formalism are considered. Some cases are presented and discussed. In conclusion, evaluating acid-base strength is dependent on the theory (formalism) as well as on the system and measuring techniques.
Resumo:
By using the van't Hoff and Gibbs equations the apparent thermodynamic functions Gibbs energy, enthalpy, and entropy of solution for sodium naproxen in ethanol + water cosolvent mixtures, were evaluated from solubility data determined at temperatures from (278.15 to 308.15) K. The drug solubility was greatest in neat water and lowest in neat ethanol at all the temperatures studied. By means of non-linear enthalpy-entropy compensation analysis, it follows that the dissolution process of this drug in ethanol-rich mixtures is entropy-driven, whereas, in water-rich mixtures the process is enthalpy-driven.
Resumo:
This work compared activated carbon, activated earth, diatomaceous earth, chitin and chitosan to removal acid blue 9, food yellow 3 and FD&C yellow nº 5 dyes from aqueous solutions with different pH values (2-10). In the best process condition for each dye, equilibrium studies were carried out at different temperatures (from 298 to 328 K) and Langmuir, Freundlich, Redlich-Peterson, Temkin and Dubinin-Radushkevich models were fitted with experimental data. In addition, entropy change, Gibbs free energy change and enthalpy change were obtained in order to verify the thermodynamic adsorption behavior.
Resumo:
By using the van't Hoff and Gibbs equations the apparent thermodynamic functions Gibbs energy, enthalpy, and entropy of solution for triclocarban in ethanol + propylene glycol mixtures were evaluated from solubility data determined at temperatures from (293.15 to 313.15) K. The drug solubility was greatest in the mixture with 0.60 in mass fraction of ethanol and lowest in neat propylene glycol at almost all the temperatures studied. Non-linear enthalpy-entropy compensation is found indicating apparently different mechanisms of the solution process according to the mixtures composition.
Resumo:
Considering intrinsic characteristics of the system exclusively, both statistical and information theory interpretations of the second law are used to provide more comprehensive meanings for the concepts of entropy, temperature, and Helmholtz and Gibbs energies. The coherence of Clausius inequality to these concepts is emphasized. The aim of this work is to re-discuss the second law of thermodynamics in accordance to homogeneous processes thermodynamics, a temporal science which is the very special oversimplification of continuum mechanics for spatially constant intensive properties.
Resumo:
Apparent thermodynamic functions, Gibbs energy, enthalpy and entropy of solution and mixing, for methocarbamol in ethanol + water mixtures, were evaluated from solubility data determined at temperatures from 293.15 K to 313.15 K and from calorimetric values of drug fusion. The drug solubility was greatest in the mixtures with 0.70 or 0.80 mass fraction of ethanol and lowest in neat water across all temperatures studied. Non-linear enthalpy-entropy compensation was found for the dissolution processes. Accordingly, solution enthalpy drives the respective processes in almost all the solvent systems analyzed.