950 resultados para Fractured implant
Resumo:
A finite element analysis was used to compare the effect of different designs of implant-retained overdentures and fixed full-arch implant-supported prosthesis on stress distribution in edentulous mandible. Four models of an human mandible were constructed. In the OR (O'ring) group, the mandible was restored with an overdenture retained by four unsplinted implants with O'ring attachment; in the BC (bar-clip) -C and BC groups, the mandibles were restored with overdentures retained by four splinted implants with bar-clip anchor associated or not with two distally placed cantilevers, respectively; in the FD (fixed denture) group, the mandible was restored with a fixed full-arch four-implant-supported prosthesis. Models were supported by the masticatory muscles and temporomandibular joints. A 100-N oblique load was applied on the left first molar. Von Mises (σvM), maximum (σmax) and minimum (σmin) principal stresses (in MPa) analyses were obtained. BC-C group exhibited the highest stress values (σvM=398.8, σmax=580.5 and σmin=-455.2) while FD group showed the lowest one (σvM=128.9, σmax=185.9 and σmin=-172.1). Within overdenture groups, the use of unsplinted implants reduced the stress level in the implant/prosthetic components (59.4% for σvM, 66.2% for σmax and 57.7% for σmin versus BC-C group) and supporting tissues (maximum stress reduction of 72% and 79.5% for σmax, and 15.7% and 85.7% for σmin on the cortical and trabecular bones, respectively). Cortical bone exhibited greater stress concentration than the trabecular bone for all groups. The use of fixed implant dentures and removable dentures retained by unsplinted implants to rehabilitate edentulous mandible reduced the stresses in the periimplant bone tissue, mucosa and implant/prosthetic components. © 2013 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
PURPOSE: The present case describes an inferior alveolar nerve lateralization for implant placement that caused mandible fracture a few days after surgery. CLINICAL REPORT: In this case, a 56-year-old female patient who had a severely atrophied jaw and showing bone height less than 7 mm from the bone crest and the mandibular canal was submitted to surgery lateralization of the inferior alveolar conducted with piezzo. Even with all postoperative care, the patient suffered an incomplete fracture of the mandible a few days after lateralization of the inferior alveolar nerve for implant placement. The patient was treated with soft diet and medications for pain and antibiotics, besides removing the implant associated with the fracture. CONCLUSION: It is suggested that this procedure may be conducted in 2 operative periods: firstly, the lateralization of the inferior alveolar; and secondly, after a period of 3 months, the implant placement in a situation of more bone stability. Copyright © 2013 by Mutaz B. Habal, MD.
Resumo:
The aim of this study was to evaluate stress distribution of the peri-implant bone by simulating the biomechanical influence of implants with different diameters of regular or platform switched connections by means of 3-dimensional finite element analysis. Five mathematical models of an implant-supported central incisor were created by varying the diameter (5.5 and 4.5 mm, internal hexagon) and abutment platform (regular and platform switched). For the cortical bone, the highest stress values (rmax and rvm) were observed in situation R1, followed by situations S1, R2, S3, and S2. For the trabecular bone, the highest stress values (rmax) were observed in situation S3, followed by situations R1, S1, R2, and S2. The influence of platform switching was more evident for cortical bone than for trabecular bone and was mainly seen in large platform diameter reduction.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Dental implants, indicated for re-establishing both mastigatory and aesthetic functions, can be placed in the sockets immediately after tooth extraction. Most studies investigate the anterior and upper regions of the dental arch, whereas few examine longitudinal appraisal of immediate implant installation in the mandibular molar region. Objective: The aim of this retrospective study was to evaluate the success rate of immediate dental implants placement in mandibular molars within a follow-up period as long as 8 years. Materials and methods: Seventy-four mandibular molar implants after non-traumatic tooth extraction between 2002 and 2008 were examined in the study. All implants were evaluated radiographically immediately after prosthesis placement, 1 year after implantation, and by the end of the experimental period, in 2010. Clinical evaluation was done according to [Albrektsson et al. (1986) The International Journal of Oral & Maxillofacial Implants, 1, 11-25] success criteria for marginal bone loss. The mean bone losses, calculated as the difference between the final evaluation measures and those taken by the end of the first year of implant, were compared using Kruskal-Wallis test with a significance level of 5%. Results: All implants presented clinical and radiographic stable conditions, that is, 100% success rate. Significant bone loss was not found between final evaluation and that of the first functional year (P > 0.05). Conclusion: Immediate implant placement of mandibular molars proved to be a viable surgical treatment given the high success rate up to 8 years after implantation. © 2012 John Wiley & Sons A/S.
Resumo:
The aim of this study was to evaluate the stress distribution in implants of regular platforms and of wide diameter with different sizes of hexagon by the 3-dimensional finite element method. We used simulated 3-dimensional models with the aid of Solidworks 2006 and Rhinoceros 4.0 software for the design of the implant and abutment and the InVesalius software for the design of the bone. Each model represented a block of bone from the mandibular molar region with an implant 10 mm in length and different diameters. Model A was an implant 3.75 mm/regular hexagon, model B was an implant 5.00 mm/regular hexagon, and model C was an implant 5.00 mm/ expanded hexagon. A load of 200 N was applied in the axial, lateral, and oblique directions. At implant, applying the load (axial, lateral, and oblique), the 3 models presented stress concentration at the threads in the cervical and middle regions, and the stress was higher for model A. At the abutment, models A and B showed a similar stress distribution, concentrated at the cervical and middle third; model C showed the highest stresses. On the cortical bone, the stress was concentrated at the cervical region for the 3 models and was higher for model A. In the trabecular bone, the stresses were less intense and concentrated around the implant body, and were more intense for model A. Among the models of wide diameter (models B and C), model B (implant 5.00 mm/regular hexagon) was more favorable with regard to distribution of stresses. Model A (implant 3.75 mm/regular hexagon) showed the largest areas and the most intense stress, and model B (implant 5.00 mm/regular hexagon) showed a more favorable stress distribution. The highest stresses were observed in the application of lateral load.
Resumo:
This study evaluated 3 implant surfaces in a dog model: (1) resorbable-blasting media + acid-etched (RBMa), alumina-blasting + acid-etching (AB/AE), and AB/AE + RBMa (hybrid). All of the surfaces were minimally rough, and Ca and P were present for the RBMa and hybrid surfaces. Following 2 weeks in vivo, no significant differences were observed for torque, bone-to-implant contact, and bone-area fraction occupied measurements. Newly formed woven bone was observed in proximity with all surfaces.
Resumo:
The retaining screw of the implant-supported dental prosthesis is the weakest point of the crown/implant system. Furthermore, crown height is another important factor that may increase the lever arm. Therefore, the aim of this study was to assess the stress distribution in implant prosthetic screws with different heights of the clinical crown of the prosthesis using the method of three-dimensional finite element analysis. Three models were created with implants (3.75 mm × 10 mm) and crowns (heights of 10, 12.5 and 15 mm). The results were visualised by means of von Mises stress maps that increased the crown heights. The screw structure exhibited higher levels of stresses in the oblique load. The oblique loading resulted in higher stress concentration when compared with the axial loading. It is concluded that the increase of the crown was damaging to the stress distribution on the screw, mainly in oblique loading. © 2013 Taylor & Francis.
Resumo:
The treatment of extensive pathologic lesions in the jaw, most of the time, can generate rehabilitation problems to the patient. The solid ameloblastoma is a locally invasive odontogenic tumor with a high recurrence rate. Its treatment is aggressive and accomplished through resection with safety margin. The criterion standard for reconstruction is autogenous bone, but it can provide a high degree of resorption, causing inconvenience to the patient because of lack of rehabilitative option. This study aimed to describe a patient with ameloblastoma treated through resection and reconstruction with autogenous bone graft, in which, after an extensive resorption of the graft was made, a modified bar was applied to support a prosthetic implant overdenture. Copyright © 2013 by Mutaz B. Habal, MD.
Resumo:
Microorganisms from the oral cavity may settle at the implant-abutment interface (IAI). As a result, tissue inflammation could occur around these structures. The databases MEDLINE/PubMed and PubMed Central were used to identify articles published from 1981 through 2012 related to the microbial colonization in the implant-abutment gap and its consequence in terms of crest bone loss and osseointegration. The following considerations could be put forward, with respect to the clinical importance of IAI: (a) the space present at the IAI seems to allow bacterial leakage to occur, in spite of the size of this space; (b) bacterial leakage seems to occur at the IAI, irrespective of the type of connection. More studies are necessary to clarify the relationship between leakage at IAI and abutment connection designs; (c) losses at the peri-implant bone crests cannot be related to the IAI size, since few studies have shown no relationship. Also, the microbial leakage at the IAI cannot be related to the bone crest loss, since there are no articles reporting this relationship; remains controversial the influence of the IAI position on the bone crest losses. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 101B: 1321-1328, 2013. Copyright © 2013 Wiley Periodicals, Inc.
Resumo:
OBJETIVO: verificar se o mini-implante no palato é eficaz como ancoragem direta para distalização dos molares superiores. MÉTODOS: foi utilizado um modelo em acrílico da arcada superior. Após a confecção da canaleta na região correspondente aos alvéolos dentários, os dentes em acrílico foram fixados com cera #7, montado aparelho ortodôntico com a técnica Edgewise e inserido um mini-implante (SIN, São Paulo) no local correspondente à rafe palatina. Foram colocados arco 0,19" x 0,25" e barra transpalatina, soldados na barra dois ganchos para retenção de dois elásticos em cadeia de dois elos, a uma carga de 150g/f de cada lado (Unitek), que se estenderam dos ganchos até o mini-implante. O modelo da maxila foi mergulhado 40 vezes em banheira e fotografado após cada mergulho para observação da movimentação dentária. Os dados foram analisados pela análise da variânçia (ANOVA) e teste de Tukey. RESULTADOS: os molares deslocaram-se distalmente 3,1mm, em média, com inclinação distal entre 3 e 5mm. CONCLUÕES: a movimentação dos molares ocorreu pela inclinação distal, com leve rotação, mas sem efeito extrusivo.
Resumo:
The aim of this study was to evaluate stress distribution on the pen-implant bone, simulating the influence of Nobel Select implants with straight or angulated abutments on regular and switching platform in the anterior maxilla, by means of 3-dimensional finite element analysis. Four mathematical models of a central incisor supported by external hexagon implant (13 mm x 5 mm) were created varying the platform (R, regular or S. switching) and the abutments (S, straight or A, angulated 15 degrees). The models were created by using Mimics 13 and Solid Works 2010 software programs. The numerical analysis was performed using ANSYS Workbench 10.0. Oblique forces (100 N) were applied to the palatine surface of the central incisor. The bone/implant interface was considered perfectly integrated. Maximum (sigma(max)) and minimum (sigma(min)) principal stress values were obtained. For the cortical bone the highest stress values (sigma(max)) were observed in the RA (regular platform and angulated abutment, 51 MPa), followed by SA (platform switching and angulated abutment, 44.8 MPa), RS (regular platform and straight abutment, 38.6 MPa) and SS (platform switching and straight abutment, 36.5 MPa). For the trabecular bone, the highest stress values (sigma(max)) were observed in the RA (6.55 MPa), followed by RS (5.88 MPa), SA (5.60 MPa), and SS (4.82 MPa). The regular platform generated higher stress in the cervical periimplant region on the cortical and trabecular bone than the platform switching, irrespective of the abutment used (straight or angulated).
Resumo:
Purpose: This study aimed to evaluate the survival probability of four narrow-diameter implant systems when subjected to fatigue loading. Materials and Methods: Seventy-two narrow-diameter implants to be restored with single-unit crowns were divided into four groups (n = 18): Astra Tech (3.5-mm diameter), with a standard connection (ASC); BioHorizon (3.4-mm diameter), with a standard connection (BSC); Intra-Lock (3.4-mm diameter), with a standard multilobular connection (ISC); and Intra-Lock (3.4-diameter), with a modified square connection (IMC). The corresponding abutments were screwed onto the implants, and standardized metal crowns (maxillary central incisors) were cemented and subjected to step-stress accelerated life testing in water. Use-level probability Weibull curves and reliability for 100,000 cycles at 150 and 200 N (90% two-sided confidence intervals) were calculated. Polarized light and scanning electron microscopes were used to access the failure modes. Results: The calculated survival probability for 100,000 cycles at 150 N was approximately 93% in group ASC, 98% in group BSC, 94% in group ISC, and 99% in group IMC. At 200 N, the survival rate was estimated to be approximately < 0.1% for ASC, 77% for BSC, 34% for ISC, and 93% for IMC. Abutment screw fracture was the main failure mode for all groups. Conclusions: Although the probability of survival was not significantly different among systems at a load of 150 N, a significant decrease was observed at 200 N for all groups except IMC.