963 resultados para FAVORABLE BINDING-SITES
Resumo:
In addition to being instrumental to the protection of mucosal epithelia, secretory IgA (SIgA) adheres to and is transported by intestinal Peyer's patch (PP) M cells. The possible functional reason for this transport is unknown. We have thus examined in mice the outcome of SIgA delivered from the intestinal lumen to the cells present in the underlying organized mucosa-associated lymphoreticular tissue. We show selective association of SIgA with dendritic cells and CD4(+) T and B lymphocytes recovered from PP in vitro. In vivo, exogenously delivered SIgA is able to enter into multiple PP lining the intestine. In PP, SIgA associates with and is internalized by dendritic cells in the subepithelial dome region, whereas the interaction with CD4(+) T cells is limited to surface binding. Interaction between cells and SIgA is mediated by the IgA moiety and occurs for polymeric and monomeric molecular forms. Thus, although immune exclusion represents the main function of SIgA, transport of the Ab by M cells might promote Ag sampling under neutralizing conditions essential to the homeostasis of mucosal surfaces.
Resumo:
The t(15;17) chromosomal translocation, specific for acute promyelocytic leukemia (APL), fuses the PML gene to the retinoic acid receptor alpha (RAR alpha) gene, resulting in expression of a PML-RAR alpha hybrid protein. In this report, we analyzed the nature of PML-RAR alpha-containing complexes in nuclear protein extracts of t(15;17)-positive cells. We show that endogenous PML-RAR alpha can bind to DNA as a homodimer, in contrast to RAR alpha that requires the retinoid X receptor (RXR) dimerization partner. In addition, these cells contain oligomeric complexes of PML-RAR alpha and endogenous RXR. Treatment with retinoic acid results in a decrease of PML-RAR alpha protein levels and, as a consequence, of DNA binding by the different complexes. Using responsive elements from various hormone signaling pathways, we show that PML-RAR alpha homodimers have altered DNA-binding characteristics when compared to RAR alpha-RXR alpha heterodimers. In transfected Drosophila SL-3 cells that are devoid of endogenous retinoid receptors PML-RAR alpha inhibits transactivation by RAR alpha-RXR alpha heterodimers in a dominant fashion. In addition, we show that both normal retinoid receptors and the PML-RAR alpha hybrid bind and activate the peroxisome proliferator-activated receptor responsive element from the Acyl-CoA oxidase gene, indicating that retinoids and peroxisome proliferator receptors may share common target genes. These properties of PML-RAR alpha may contribute to the transformed phenotype of APL cells.
Resumo:
The need for better gene transfer systems towards improved risk=benefit balance for patients remains a major challenge in the clinical translation of gene therapy (GT). We have investigated the improvement of integrating vectors safety in combining (i) new short synthetic genetic insulator elements (GIE) and (ii) directing genetic integration to heterochromatin. We have designed SIN-insulated retrovectors with two candidate GIEs and could identify a specific combination of insulator 2 repeats which translates into best functional activity, high titers and boundary effect in both gammaretro (p20) and lentivectors (DCaro4) (see Duros et al, abstract ibid). Since GIEs are believed to shield the transgenic cassette from inhibitory effects and silencing, DCaro4 has been further tested with chimeric HIV-1 derived integrases which comprise C-ter chromodomains targeting heterochromatin through either histone H3 (ML6chimera) or methylatedCpGislands (ML10). With DCaro4 only and both chimeras, a homogeneous expression is evidenced in over 20% of the cells which is sustained over time. With control lentivectors, less than 2% of cells express GFP as compared to background using a control double-mutant in both catalytic and ledgf binding-sites; in addition, a two-times increase of expression can be induced with histone deacetylase inhibitors. Our approach could significantly reduce integration into open chromatin sensitive sites in stem cells at the time of transduction, a feature which might significantly decrease subsequent genotoxicity, according to X-SCIDs patients data.Work performed with the support of EC-DG research within the FP6-Network of Excellence, CLINIGENE: LSHB-CT-2006-018933
Resumo:
Report for the scientific sojourn carried out at the Max Planck Institut of Molecular Phisiology, Germany, from 2006 to 2008.The work carried out during this postdoctoral stage was focused on two different projects. Firstly, identification of D-Ala D-Ala Inhibitors and the development of new synthethic approaches to obtain lipidated peptides and proteins and the use of these lipidated proteins in biological and biophysical studies. In the first project, new D-Ala D-Ala inhibitors were identified by using structural alignments of the ATP binding sites of the bacterial ligase DDl and protein and lipid kinases in complex with ATP analogs. We tested a series of commercially available kinase inhibitors and found LFM-A13 and Tyrphostine derivatives to inhibit DDl enzyme activity. Based on the initial screening results we synthesized a series of malononitrilamide and salicylamide derivatives and were able to confirm the validity of these scaffolds as inhibitors of DDl. From this investigation we gained a better understanding of the structural requirements and limitations necessary for the preparation of ATP competitive DDl inhibitors. The compounds in this study may serve as starting points for the development of bi-substrate inhibitors that incorporate both, an ATP competitive and a substrate competitive moiety. Bisubstrate inhibitors that block the ATP and D-Ala binding sites should exhibit enhanced selectivity and potency profiles by preferentially inhibiting DDl over kinases. In the second project, an optimized synthesis for tha alkylation of cysteins using the thiol ene reaction was establisehd. This new protocol allowed us to obtain large amounts of hexadecylated cysteine that was required for the synthesis of differently lipidated peptides. Afterwards the synthesis of various N-ras peptides bearing different lipid anchors was performed and the peptides were ligated to a truncated N-ras protein. The influence of this differently lipidated N-ras proteins on the partioning and association of N-Ras in model membrane subdomains was studied using Atomic Force Microscopy.
Resumo:
The beta thyroid hormone receptor (TRbeta), but not TRalpha1, plays a specific role in mediating T(3)-dependent repression of hypothalamic TRH transcription. To investigate the structural basis of isoform specificity, we compared the transcriptional regulation and DNA binding obtained with chimeric and N-terminally deleted TRs. Using in vivo transfection assays to follow hypothalamic TRH transcription in the mouse brain, we found that TRbeta1 and chimeras with the TRbeta1 N terminus did not affect either transcriptional activation or repression from the rat TRH promoter, whereas N-terminally deleted TRbeta1 impaired T(3)-dependent repression. TRalpha1 or chimeras with the TRalpha1 N terminus reduced T(3)-independent transcriptional activation and blocked T(3)-dependent repression of transcription. Full deletion of the TRalpha1 N terminus restored ligand-independent activation of transcription. No TR isoform specificity was seen after transcription from a positive thyroid hormone response element. Gel mobility assays showed that all TRs tested bound specifically to the main negative thyroid hormone response element in the TRH promoter (site 4). Addition of neither steroid receptor coactivator 1 nor nuclear extracts from the hypothalamic paraventricular nuclei revealed any TR isoform specificity in binding to site 4. Thus N-terminal sequences specify TR T(3)-dependent repression of TRH transcription but not DNA recognition, emphasizing as yet unknown neuron-specific contributions to protein-promoter interactions in vivo.
Resumo:
Plant growth is strongly influenced by the presence of neighbors that compete for light resources. In response to vegetational shading shade-intolerant plants such as Arabidopsis display a suite of developmental responses known as the shade-avoidance syndrome (SAS). The phytochrome B (phyB) photoreceptor is the major light sensor to mediate this adaptive response. Control of the SAS occurs in part with phyB, which controls protein abundance of phytochrome-interacting factors 4 and 5 (PIF4 and PIF5) directly. The shade-avoidance response also requires rapid biosynthesis of auxin and its transport to promote elongation growth. The identification of genome-wide PIF5-binding sites during shade avoidance revealed that this bHLH transcription factor regulates the expression of a subset of previously identified SAS genes. Moreover our study suggests that PIF4 and PIF5 regulate elongation growth by controlling directly the expression of genes that code for auxin biosynthesis and auxin signaling components.
Resumo:
It has been recently established that Klotho coreceptors associate with fibroblast growth factor (FGF) receptor tyrosine kinases (FGFRs) to enable signaling by endocrine-acting FGFs. However, the molecular interactions leading to FGF-FGFR-Klotho ternary complex formation remain incompletely understood. Here, we show that in contrast to αKlotho, βKlotho binds its cognate endocrine FGF ligand (FGF19 or FGF21) and FGFR independently through two distinct binding sites. FGF19 and FGF21 use their respective C-terminal tails to bind to a common binding site on βKlotho. Importantly, we also show that Klotho coreceptors engage a conserved hydrophobic groove in the immunoglobulin-like domain III (D3) of the "c" splice isoform of FGFR. Intriguingly, this hydrophobic groove is also used by ligands of the paracrine-acting FGF8 subfamily for receptor binding. Based on this binding site overlap, we conclude that while Klotho coreceptors enhance binding affinity of FGFR for endocrine FGFs, they actively suppress binding of FGF8 subfamily ligands to FGFR.
Resumo:
By interacting with MHC class II molecules, CD4 facilitates lineage development as well as activation of Th cells. Expression of physiological levels of CD4 requires a proximal CD4 enhancer to stimulate basic CD4 promoter activity. T cell factor (TCF)-1/beta-catenin pathway has previously been shown to regulate thymocyte survival via up-regulating antiapoptotic molecule Bcl-xL. By both loss and gain of function studies, in this study we show additional function of TCF-1/beta-catenin pathway in the regulation of CD4 expression in vivo. Mice deficient in TCF-1 displayed significantly reduced protein and mRNA levels of CD4 in CD4+ CD8+ double-positive (DP) thymocytes. A transgene encoding Bcl-2 restored survival but not CD4 levels of TCF-1(-/-) DP cells. Thus, TCF-1-regulated survival and CD4 expression are two separate events. In contrast, CD4 levels were restored on DP TCF-1(-/-) cells by transgenic expression of a wild-type TCF-1, but not a truncated TCF-1 that lacks a domain required for interacting with beta-catenin. Furthermore, forced expression of a stabilized beta-catenin, a coactivator of TCF-1, resulted in up-regulation of CD4. TCF-1 or stabilized beta-catenin greatly stimulated activity of a CD4 reporter gene driven by a basic CD4 promoter and the CD4 enhancer. However, mutation of a potential TCF binding site located within the enhancer abrogated TCF-1 and beta-catenin-mediated activation of CD4 reporter. Finally, recruitment of TCF-1 to CD4 enhancer was detected in wild-type but not TCF-1 null mice by chromatin-immunoprecipitation analysis. Thus, our results demonstrated that TCF/beta-catenin pathway enhances CD4 expression in vivo by recruiting TCF-1 to stimulate CD4 enhancer activity.
Resumo:
Recently, we proposed the hypothesis according to wich the central hypotensive effect of clonidine and related substances could be related to an action upon specific receptors, requiring the imidazoline or imidazoline-like structures, rather than alpha2-adrenoceptors. Since then, direct evidences have been accumulated to confirm the existence of a population of imidazoline specific binding sites in the brainstem of animals and man, more precisely in the Nucleus Reticularis Lateralis (NRL) region of the ventrolateral medulla (VLM), site of the antihypertensive action of clonidine. The purification of the putative endogenous ligand of the imidazoline receptors - named endazoline - is currently being attempted from human brain extracts. This new concept might at last lead to the expected dissociation of the pharmacological mechanisms involved, on the one hand, in the therapeutic antihypertensive effect, and on the other, in their major side-effect, which is sedation. In fact, it has been recently confirmed that hypotension is mediated by the activation of imidazoline preferring receptors (IPR) within the NRL region, while sedation is attributed to the inhibition of alpha2-adrenergic mechanisms in the locus coeruleus, which is involved in the control of the sleep-waking cycle. The IPRmay constitute on interesting target for new drugs in the treatment of arterial hypertension. Finally, dysfunctions of this modulatory system which could be involved in the pathophysiologyof some forms of the hypertensive disease are under investigation.
Resumo:
2 Abstract2.1 En françaisLe séquençage du génome humain est un pré-requis fondamental à la compréhension de la biologie de l'être humain. Ce projet achevé, les scientifiques ont dû faire face à une tâche aussi importante, comprendre cette suite de 3 milliards de lettres qui compose notre génome. Le consortium ENCODE (ENCyclopedia Of Dna Elements) fût formé comme une suite logique au projet du génome humain. Son rôle est d'identifier tous les éléments fonctionnels de notre génome incluant les régions transcrites, les sites d'attachement des facteurs de transcription, les sites hypersensibles à la DNAse I ainsi que les marqueurs de modification des histones. Dans le cadre de ma thèse doctorale, j'ai participé à 2 sous-projets d'ENCODE. En premier lieu, j'ai eu la tâche de développer et d'optimiser une technique de validation expérimentale à haut rendement de modèles de gènes qui m'a permis d'estimer la qualité de la plus récente annotation manuelle. Ce nouveau processus de validation est bien plus efficace que la technique RNAseq qui est actuellement en train de devenir la norme. Cette technique basée sur la RT-PCR, m'a notamment permis de découvrir de nouveaux exons dans 10% des régions interrogées. En second lieu j'ai participé à une étude ayant pour but d'identifier les extrémités de tous les gènes des chromosomes humains 21 et 22. Cette étude à permis l'identification à large échelle de transcrits chimères comportant des séquences provenant de deux gènes distincts pouvant être à une grande distance l'un de autre.2.2 In EnglishThe completion of the human genome sequence js the prerequisite to fully understand the biology of human beings. This project achieved, scientists had to face another challenging task, understanding the meaning of the 3 billion letters composing this genome. As a logical continuation of the human genome project, the ENCODE (ENCyclopedia Of DNA Elements) consortium was formed with the aim of annotating all its functional elements. These elements include transcribed regions, transcription binding sites, DNAse I hypersensitive sites and histone modification marks. In the frame of my PhD thesis, I was involved in two sub-projects of ENCODE. Firstly I developed and optimized an high throughput method to validate gene models, which allowed me to assess the quality of the most recent manually-curated annotation. This novel experimental validation pipeline is extremely effective, far more so than transcriptome profiling through RNA sequencing, which is becoming the norm. This RT-PCR-seq targeted-approach is likewise particularly efficient in identifying novel exons, as we discovered about 10% of loci with unannotated exons. Secondly, I participated to a study aiming to identify the gene boundaries of all genes in the human chromosome 21 and 22. This study led to the identification of chimeric transcripts that are composed of sequences coming form two distinct genes that can be map far away from each other.
Resumo:
Lymphocytes regulate their responsiveness to IL-2 through the transcriptional control of the IL-2R alpha gene, which encodes a component of the high affinity IL-2 receptor. In the mouse IL-2R alpha gene this control is exerted via two regulatable elements, a promoter proximal region, and an IL-2-responsive enhancer (IL-2rE) 1.3 kb upstream. In vitro and in vivo functional analysis of the IL-2rE in the rodent thymic lymphoma-derived, CD4- CD8- cell line PC60 demonstrated that three separate elements, sites I, II, and III, were necessary for IL-2 responsiveness; these three sites demonstrate functional cooperation. Site III contains a consensus binding motif for members of the Ets family of transcription factors. Here we demonstrate that Elf-1, an Ets-like protein, binds to site III and participates in IL-2 responsiveness. In vitro site III forms a complex with a protein constitutively present in nuclear extracts from PC60 cells as well as from normal CD4- CD8- thymocytes. We have identified this molecule as Elf-1 according to a number of criteria. The complex possesses an identical electrophoretic mobility to that formed by recombinant Elf-1 protein and is super-shifted by anti-Elf-1 antibodies. Biotinylated IL-2rE probes precipitate Elf-1 from PC60 extracts provided site III is intact and both recombinant and PC60-derived proteins bind with the same relative affinities to different mutants of site III. In addition, by introducing mutations into the core of the site III Ets-like motif and comparing the corresponding effects on the in vitro binding of Elf-1 and the in vivo IL-2rE activity, we provide strong evidence that Elf-1 is directly involved in IL-2 responsiveness. The nature of the functional cooperativity observed between Elf-1 and the factors binding sites I and II remains unresolved; experiments presented here however suggest that this effect may not require direct interactions between the proteins binding these three elements.
Resumo:
The mechanisms of blood vessel maturation into distinct parts of the blood vasculature such as arteries, veins, and capillaries have been the subject of intense investigation over recent years. In contrast, our knowledge of lymphatic vessel maturation is still fragmentary. In this study, we provide a molecular and morphological characterization of the major steps in the maturation of the primary lymphatic capillary plexus into collecting lymphatic vessels during development and show that forkhead transcription factor Foxc2 controls this process. We further identify transcription factor NFATc1 as a novel regulator of lymphatic development and describe a previously unsuspected link between NFATc1 and Foxc2 in the regulation of lymphatic maturation. We also provide a genome-wide map of FOXC2-binding sites in lymphatic endothelial cells, identify a novel consensus FOXC2 sequence, and show that NFATc1 physically interacts with FOXC2-binding enhancers. As damage to collecting vessels is a major cause of lymphatic dysfunction in humans, our results suggest that FOXC2 and NFATc1 are potential targets for therapeutic intervention.
Resumo:
Duchenne muscular dystrophy is an X-linked genetic disease caused by the absence of functional dystrophin. Pharmacological upregulation of utrophin, the autosomal homologue of dystrophin, offers a potential therapeutic approach to treat Duchenne patients. Full-length utrophin mRNA is transcribed from two alternative promoters, called A and B. In contrast to the utrophin promoter A, little is known about the factors regulating the activity of the utrophin promoter B. Computer analysis of this second promoter revealed the presence of several conserved binding motives for Ets-transcription factors. Using electrotransfer of cDNA into mouse muscles, we demonstrate that a genetically modified beta-subunit of the Ets-transcription factor GA-binding protein potently activates a utrophin promoter B reporter construct in innervated muscle fibers in vivo. These results make the GA-binding protein and the signaling cascade regulating its activity in muscle cells, potential targets for the pharmacological modulation of utrophin expression in Duchenne patients.
Resumo:
Unlike other tumor necrosis factor family members, the cytotoxic ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo-2L contains an unpaired cysteine residue (Cys(230)) in its receptor-binding domain. Here we show that the biological activity of both soluble recombinant TRAIL and cell-associated, full-length TRAIL is critically dependent on the presence of Cys(230). Mutation of Cys(230) to alanine or serine strongly affected its ability to kill target cells. Binding to its receptors was decreased by at least 200-fold, and the stability of its trimeric structure was reduced. In recombinant TRAIL, Cys(230) was found engaged either in interchain disulfide bridge formation, resulting in poorly active TRAIL, or in the chelation of one zinc atom per TRAIL trimer in the active, pro-apoptotic form of TRAIL.
Resumo:
Activation of the mitogen-activated protein (MAP) kinase cascade by progesterone in Xenopus oocytes leads to a marked down-regulation of activity of the amiloride-sensitive epithelial sodium channel (ENaC). Here we have studied the signaling pathways involved in progesterone effect on ENaC activity. We demonstrate that: (i) the truncation of the C termini of the alphabetagammaENaC subunits results in the loss of the progesterone effect on ENaC; (ii) the effect of progesterone was also suppressed by mutating conserved tyrosine residues in the Pro-X-X-Tyr (PY) motif of the C termini of the beta and gamma ENaC subunits (beta(Y618A) and gamma(Y628A)); (iii) the down-regulation of ENaC activity by progesterone was also suppressed by co-expression ENaC subunits with a catalytically inactive mutant of Nedd4-2, a ubiquitin ligase that has been previously demonstrated to decrease ENaC cell-surface expression via a ubiquitin-dependent internalization/degradation mechanism; (iv) the effect of progesterone was significantly reduced by suppression of consensus sites (beta(T613A) and gamma(T623A)) for ENaC phosphorylation by the extracellular-regulated kinase (ERK), a MAP kinase previously shown to facilitate the binding of Nedd4 ubiquitin ligases to ENaC; (v) the quantification of cell-surface-expressed ENaC subunits revealed that progesterone decreases ENaC open probability (whole cell P(o), wcP(o)) and not its cell-surface expression. Collectively, these results demonstrate that the binding of active Nedd4-2 to ENaC is a crucial step in the mechanism of ENaC inhibition by progesterone. Upon activation of ERK, the effect of Nedd4-2 on ENaC open probability can become more important than its effect on ENaC cell-surface expression.