970 resultados para Embedded boundary method


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An iterative method for reconstruction of the solution to a parabolic initial boundary value problem of second order from Cauchy data is presented. The data are given on a part of the boundary. At each iteration step, a series of well-posed mixed boundary value problems are solved for the parabolic operator and its adjoint. The convergence proof of this method in a weighted L2-space is included.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An iterative method for the reconstruction of a stationary three-dimensional temperature field, from Cauchy data given on a part of the boundary, is presented. At each iteration step, a series of mixed well-posed boundary value problems are solved for the heat operator and its adjoint. A convergence proof of this method in a weighted L 2-space is include

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a model eigenvalue problem (EVP) in 1D, with periodic or semi–periodic boundary conditions (BCs). The discretization of this type of EVP by consistent mass finite element methods (FEMs) leads to the generalized matrix EVP Kc = λ M c, where K and M are real, symmetric matrices, with a certain (skew–)circulant structure. In this paper we fix our attention to the use of a quadratic FE–mesh. Explicit expressions for the eigenvalues of the resulting algebraic EVP are established. This leads to an explicit form for the approximation error in terms of the mesh parameter, which confirms the theoretical error estimates, obtained in [2].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* The research is supported partly by INTAS: 04-77-7173 project, http://www.intas.be

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article demonstrates the use of embedded fibre Bragg gratings as vector bending sensor to monitor two-dimensional shape deformation of a shape memory polymer plate. The shape memory polymer plate was made by using thermal-responsive epoxy-based shape memory polymer materials, and the two fibre Bragg grating sensors were orthogonally embedded, one on the top and the other on the bottom layer of the plate, in order to measure the strain distribution in both longitudinal and transverse directions separately and also with temperature reference. When the shape memory polymer plate was bent at different angles, the Bragg wavelengths of the embedded fibre Bragg gratings showed a red-shift of 50 pm/°caused by the bent-induced tensile strain on the plate surface. The finite element method was used to analyse the stress distribution for the whole shape recovery process. The strain transfer rate between the shape memory polymer and optical fibre was also calculated from the finite element method and determined by experimental results, which was around 0.25. During the experiment, the embedded fibre Bragg gratings showed very high temperature sensitivity due to the high thermal expansion coefficient of the shape memory polymer, which was around 108.24 pm/°C below the glass transition temperature (Tg) and 47.29 pm/°C above Tg. Therefore, the orthogonal arrangement of the two fibre Bragg grating sensors could provide a temperature compensation function, as one of the fibre Bragg gratings only measures the temperature while the other is subjected to the directional deformation. © The Author(s) 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 26A33 (primary), 35S15

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Иван Хр. Димовски, Юлиан Ц. Цанков - Предложен е метод за намиране на явни решения на клас двумерни уравнения на топлопроводността с нелокални условия по пространствените променливи. Методът е основан на директно тримерно операционно смятане. Класическата дюамелова конволюция е комбинирана с две некласически конволюции за операторите ∂xx и ∂yy в една тримерна конволюция. Съответното операционно смятане използва мултипликаторни частни. Мултипликаторните частни позволяват да се продължи принципът на Дюамел за пространствените променливи и да се намерят явни решения на разглежданите гранични задачи. Общите разглеждания са приложени в случая на гранични условия от типа на Йонкин. Намерени са експлицитни решения в затворен вид.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spectroscopic pump-probe reflectance method was used to investigate recombination dynamics in samples of nanocrystalline silicon embedded in a matrix of hydrogenated amorphous silicon. We found that the dynamics can be described by a rate equation including linear and quadratic terms corresponding to recombination processes associated with impurities and impurity-assisted Auger ionization, respectively. We determined the values of the recombination coefficients using the initial concentrations method. We report the coefficients of 1.5 × 1011 s-1 and 1.1 × 10-10 cm3 s-1 for the impurity-assisted recombination and Auger ionization, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical method for the Dirichlet initial boundary value problem for the heat equation in the exterior and unbounded region of a smooth closed simply connected 3-dimensional domain is proposed and investigated. This method is based on a combination of a Laguerre transformation with respect to the time variable and an integral equation approach in the spatial variables. Using the Laguerre transformation in time reduces the parabolic problem to a sequence of stationary elliptic problems which are solved by a boundary layer approach giving a sequence of boundary integral equations of the first kind to solve. Under the assumption that the boundary surface of the solution domain has a one-to-one mapping onto the unit sphere, these integral equations are transformed and rewritten over this sphere. The numerical discretisation and solution are obtained by a discrete projection method involving spherical harmonic functions. Numerical results are included.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose and investigate an application of the method of fundamental solutions (MFS) to the radially symmetric and axisymmetric backward heat conduction problem (BHCP) in a solid or hollow cylinder. In the BHCP, the initial temperature is to be determined from the temperature measurements at a later time. This is an inverse and ill-posed problem, and we employ and generalize the MFS regularization approach [B.T. Johansson and D. Lesnic, A method of fundamental solutions for transient heat conduction, Eng. Anal. Boundary Elements 32 (2008), pp. 697–703] for the time-dependent heat equation to obtain a stable and accurate numerical approximation with small computational cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose and investigate an application of the method of fundamental solutions (MFS) to the radially symmetric and axisymmetric backward heat conduction problem (BHCP) in a solid or hollow cylinder. In the BHCP, the initial temperature is to be determined from the temperature measurements at a later time. This is an inverse and ill-posed problem, and we employ and generalize the MFS regularization approach [B.T. Johansson and D. Lesnic, A method of fundamental solutions for transient heat conduction, Eng. Anal. Boundary Elements 32 (2008), pp. 697–703] for the time-dependent heat equation to obtain a stable and accurate numerical approximation with small computational cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the past several decades, we have experienced the tremendous growth, in both scale and scope, of real-time embedded systems, thanks largely to the advances in IC technology. However, the traditional approach to get performance boost by increasing CPU frequency has been a way of past. Researchers from both industry and academia are turning their focus to multi-core architectures for continuous improvement of computing performance. In our research, we seek to develop efficient scheduling algorithms and analysis methods in the design of real-time embedded systems on multi-core platforms. Real-time systems are the ones with the response time as critical as the logical correctness of computational results. In addition, a variety of stringent constraints such as power/energy consumption, peak temperature and reliability are also imposed to these systems. Therefore, real-time scheduling plays a critical role in design of such computing systems at the system level. We started our research by addressing timing constraints for real-time applications on multi-core platforms, and developed both partitioned and semi-partitioned scheduling algorithms to schedule fixed priority, periodic, and hard real-time tasks on multi-core platforms. Then we extended our research by taking temperature constraints into consideration. We developed a closed-form solution to capture temperature dynamics for a given periodic voltage schedule on multi-core platforms, and also developed three methods to check the feasibility of a periodic real-time schedule under peak temperature constraint. We further extended our research by incorporating the power/energy constraint with thermal awareness into our research problem. We investigated the energy estimation problem on multi-core platforms, and developed a computation efficient method to calculate the energy consumption for a given voltage schedule on a multi-core platform. In this dissertation, we present our research in details and demonstrate the effectiveness and efficiency of our approaches with extensive experimental results.