949 resultados para Efficiency of cleaning
Resumo:
IP multicast allows the efficient support of group communication services by reducing the number of IP flows needed for such communication. The increasing generalization in the use of multicast has also triggered the need for supporting IP multicast in mobile environments. Proxy Mobile IPv6 (PMIPv6) is a network-based mobility management solution, where the functionality to support the terminal movement resides in the network. Recently, a baseline solution has been adopted for multicast support in PMIPv6. Such base solution has inefficiencies in multicast routing because it may require multiple copies of a single stream to be received by the same access gateway. Nevertheless, there is an alternative solution to support multicast in PMIPv6 that avoids this issue. This paper evaluates by simulation the scalability of both solutions under realistic conditions, and provides an analysis of the sensitivity of the two proposals against a number of parameters.
Resumo:
We present the design and implementation of the and-parallel component of ACE. ACE is a computational model for the full Prolog language that simultaneously exploits both or-parallelism and independent and-parallelism. A high performance implementation of the ACE model has been realized and its performance reported in this paper. We discuss how some of the standard problems which appear when implementing and-parallel systems are solved in ACE. We then propose a number of optimizations aimed at reducing the overheads and the increased memory consumption which occur in such systems when using previously proposed solutions. Finally, we present results from an implementation of ACE which includes the optimizations proposed. The results show that ACE exploits and-parallelism with high efficiency and high speedups. Furthermore, they also show that the proposed optimizations, which are applicable to many other and-parallel systems, significantly decrease memory consumption and increase speedups and absolute performance both in forwards execution and during backtracking.
Resumo:
This paper presents and proves some fundamental results for independent and-parallelism (IAP). First, the paper treats the issues of correctness and efficiency: after defining strict and non-strict goal independence, it is proved that if strictly independent goals are executed in parallel the solutions obtained are the same as those produced by standard sequential execution. It is also shown that, in the absence of failure, the parallel proof procedure doesn't genérate any additional work (with respect to standard SLDresolution) while the actual execution time is reduced. The same results hold even if non-strictly independent goals are executed in parallel, provided a trivial rewriting of such goals is performed. In addition, and most importantly, treats the issue of compile-time generation of IAP by proposing conditions, to be written at compile-time, to efficiently check strict and non-strict goal independence at run-time and proving the sufficiency of such conditions. It is also shown how simpler conditions can be constructed if some information regarding the binding context of the goals to be executed in parallel is available to the compiler trough either local or program-level analysis. These results therefore provide a formal basis for the automatic compile-time generation of IAP. As a corollary of such results, the paper also proves that negative goals are always non-strictly independent, and that goals which share a first occurrence of an existential variable are never independent.
Resumo:
During the first decade of the new millennium, fueled by the economic development in Spain, urban bus services were extended. Since the years 2008 and 2009, the root of the economic crisis, the improvement of these services is at risk due to economic problems. In this paper, the technical efficiency of the main urban bus companies in Spain during the 2004–2009 period are studied using SBM (slack-based measures) models and by establishing the slacks in the services' production inputs. The influence of a series of exogenous variables on the operation of the different services is also analyzed. It is concluded that only the 24% of the case studies are efficient, and some urban form variables can explain part of the inefficiency. The methodology used allows studying the inefficiency in a disaggregated way that other DEA (data envelopment analysis) models do not.
Resumo:
This article aims to quantify the efficiency of mobile operators in Spain and other European countries such as France and Germany. The period considered is from 2002 to 2008. Linear regression is used to analyze the relationship between growth in revenue and gross operating margin (EBITDA) generated by the relevant operators and the aggregate industry in each country. At the industry level, it is shown that (i) there is a strong correlation between revenue and margin; and (ii) this correlation weakens when competitive intensity grows. At the operator level, those which achieved larger increases in revenues did not sacrifice their margins, but offset the additional investments and costs required to achieve said growth through economies of scale.
Resumo:
An attractive but challenging technology for high efficiency solar energy conversion is the intermediate band solar cell (IBSC), whose theoretical efficiency limit is 63%, yet which has so far failed to yield high efficiencies in practice. The most advanced IBSC technology is that based on quantum dots (QDs): the QD-IBSC. In this paper, k·p calculations of photon absorption in the QDs are combined with a multi-level detailed balance model. The model has been used to reproduce the measured quantum efficiency of a real QD-IBSC and its temperature dependence. This allows the analysis of individual sub-bandgap transition currents, which has as yet not been possible experimentally, yielding a deeper understanding of the failure of current QD-IBSCs. Based on the agreement with experimental data, the model is believed to be realistic enough to evaluate future QD-IBSC proposals.
Resumo:
The efficiencies of electrodynamic-tether (EDT) thrusters made of single bare tethers with different types of cross sections, several parallel bare tethers, or a fully insulated tether with a three-dimensional passive end-collector, are discussed. Current collection, mass, and ohmic resistance considerations are balanced against each other in discussing efficiencies. Use is made of recent results on the validity domain of orbital-motion-limited (OML) collection, the current law beyond that domain, and interference effects between parallel bare tethers; and on current adjustment to variations in electron density encountered in orbit. Comparisons between EDT thrusters and electrical thrusters in terms of the ratio of dedicated mass to the total mission impulse show EDT to be superior for mission times over 50-100 days.
Resumo:
The performance efficiency of electrodynamic bare tethers acting as thrusters in low Earth orbit, as gauged by the ratio of the system mass dedicated to thrust over mission impulse, is analyzed and compared to the performance efficiency of electrical thrusters. Tether systems are much lighter for times beyond six months in space-tug operations, where there is a dedicated solar array, and beyond one month for reboost of the International Space Station, where the solar array is already in place. Bare-tether propulsive efficiency itself, with the tether considered as part of the power plant, is higher for space tugs. Tether optimization shows that thin tapes have greater propulsive efficiency and are less sensitive to plasma density variations in orbit than cylindrical tethers. The efficiency increases with tape length if some segment next to the power supply at the top is insulated to make the tether potential bias vanish at the lower end; multitape tethers must be used to keep the efficiency high at high thrust levels. The efficiency has a maximum for tether-hardware mass equal to the fraction of power-subsystem mass going into ohmic power, though the maximum is very flat. For space tugs, effects of induced-bias changes in orbit might need to be reduced by choosing a moderately large power-subsystem to tether-hardware mass ratio or by tracking the current-voltage characteristic of the solar array.
Resumo:
This paper provides a meta-analysis of long/short distance passenger interconnectivity within the European context. The analysis is based on the results of the European project HERMES of the 7th EU R&D Programme. The study collected stakeholders and travelers’ valuation and preferences in 5 interchanges in 3 EU countries. To that end a common survey was conducted in the following sites: Gothenburg Central Station (Sweden), Avenida de America Interchange in Madrid, Lleida-Zaragoza railway stations (Spain), and the Intermodal Station of Part Dieu in Lyon (France). The first survey addresses the analysis of the different stakeholders’ opinion on the interchange management and characteristics. The second survey gives an insight into the key requirements of long/short distance intermodal passengers in the selected case studies. This included the following aspects: on one hand, trip origin and destination, connecting transport services and modes, trip characteristics, type of ticket, trip motive and socioeconomic characteristics of the traveller. On the other hand, it was structured in such a way to ask passengers to rate importance/satisfaction of a series of common quality and functional aspects like information, accessibility, transfer times, service supply, etc. In conclusion, the paper highlights which elements of the interchange are considered as relevant and how different groups of stakeholders value them, both theoretically and in the selected case studies. They also have identified some key barriers as the lack of internal coordination among operators, managers and decision makers, as well as the the poor signage, particularly among connecting services. Travellers seem to have different priorities depending on their age, purpose of trip and mode chosen. In some cases time appears as the most relevant factor, whilst price is decisive in others.
Resumo:
In this work we study Twitter data to understand influence dynamics in social networks. We define user efficiency on Twitter, as the ratio between the emergent spreading process and the activity employed by the user. We characterize this property by means of a quantitative analysis of the structural and dynamical patterns emergent from human interactions, and show it to be universal across several Twitter conversations.
Resumo:
Debido al gran incremento de datos digitales que ha tenido lugar en los últimos años, ha surgido un nuevo paradigma de computación paralela para el procesamiento eficiente de grandes volúmenes de datos. Muchos de los sistemas basados en este paradigma, también llamados sistemas de computación intensiva de datos, siguen el modelo de programación de Google MapReduce. La principal ventaja de los sistemas MapReduce es que se basan en la idea de enviar la computación donde residen los datos, tratando de proporcionar escalabilidad y eficiencia. En escenarios libres de fallo, estos sistemas generalmente logran buenos resultados. Sin embargo, la mayoría de escenarios donde se utilizan, se caracterizan por la existencia de fallos. Por tanto, estas plataformas suelen incorporar características de tolerancia a fallos y fiabilidad. Por otro lado, es reconocido que las mejoras en confiabilidad vienen asociadas a costes adicionales en recursos. Esto es razonable y los proveedores que ofrecen este tipo de infraestructuras son conscientes de ello. No obstante, no todos los enfoques proporcionan la misma solución de compromiso entre las capacidades de tolerancia a fallo (o de manera general, las capacidades de fiabilidad) y su coste. Esta tesis ha tratado la problemática de la coexistencia entre fiabilidad y eficiencia de los recursos en los sistemas basados en el paradigma MapReduce, a través de metodologías que introducen el mínimo coste, garantizando un nivel adecuado de fiabilidad. Para lograr esto, se ha propuesto: (i) la formalización de una abstracción de detección de fallos; (ii) una solución alternativa a los puntos únicos de fallo de estas plataformas, y, finalmente, (iii) un nuevo sistema de asignación de recursos basado en retroalimentación a nivel de contenedores. Estas contribuciones genéricas han sido evaluadas tomando como referencia la arquitectura Hadoop YARN, que, hoy en día, es la plataforma de referencia en la comunidad de los sistemas de computación intensiva de datos. En la tesis se demuestra cómo todas las contribuciones de la misma superan a Hadoop YARN tanto en fiabilidad como en eficiencia de los recursos utilizados. ABSTRACT Due to the increase of huge data volumes, a new parallel computing paradigm to process big data in an efficient way has arisen. Many of these systems, called dataintensive computing systems, follow the Google MapReduce programming model. The main advantage of these systems is based on the idea of sending the computation where the data resides, trying to provide scalability and efficiency. In failure-free scenarios, these frameworks usually achieve good results. However, these ones are not realistic scenarios. Consequently, these frameworks exhibit some fault tolerance and dependability techniques as built-in features. On the other hand, dependability improvements are known to imply additional resource costs. This is reasonable and providers offering these infrastructures are aware of this. Nevertheless, not all the approaches provide the same tradeoff between fault tolerant capabilities (or more generally, reliability capabilities) and cost. In this thesis, we have addressed the coexistence between reliability and resource efficiency in MapReduce-based systems, looking for methodologies that introduce the minimal cost and guarantee an appropriate level of reliability. In order to achieve this, we have proposed: (i) a formalization of a failure detector abstraction; (ii) an alternative solution to single points of failure of these frameworks, and finally (iii) a novel feedback-based resource allocation system at the container level. Finally, our generic contributions have been instantiated for the Hadoop YARN architecture, which is the state-of-the-art framework in the data-intensive computing systems community nowadays. The thesis demonstrates how all our approaches outperform Hadoop YARN in terms of reliability and resource efficiency.
Resumo:
A semiempirical method for predicting the damping efficiency of hysteresis rods on-board small satellites is presented. It is based on the evaluation of dissipating energy variation of different ferromagnetic materials for two different rod shapes: thin film and circular cross-section rods, as a function of their elongation. Based on this formulation, an optimum design considering the size of hysteresis rods, their cross section shape, and layout has been proposed. Finally, the formulation developed was applied to the case of four existing small satellites, whose corresponding in-flight data are published. A good agreement between the estimated rotational speed decay time and the in-flight data has been observed.
Resumo:
The energy bandgap of GaInP solar cells can be tuned by modifying the degree of order of the alloy. In this study, we employed Sb to increase the energy bandgap of the GaInP and analyzed its impact on the performance of GaInP solar cells. An effective change in the cutoff wavelength of the external quantum efficiency of GaInP solar cells and an effective increase of 50 mV in the open-circuit voltage of GaInP/Ga(In)As/Ge triple junction solar cells were obtained with the use of Sb. Copyright © 2016 John Wiley & Sons, Ltd.
Resumo:
The T-DNA transfer apparatus of Agrobacterium tumefaciens mediates the delivery of the T-DNA into plant cells, the transfer of the IncQ plasmid RSF1010 into plant cells, and the conjugal transfer of RSF1010 between Agrobacteria. We show in this report that the Agrobacterium-to-Agrobacterium conjugal transfer efficiencies of RSF1010 increase dramatically if the recipient strain, as well as the donor strain, carries a wild-type Ti plasmid and is capable of vir gene expression. Investigation of possible mechanisms that could account for this increased efficiency revealed that the VirB proteins encoded by the Ti plasmid were required. Although, with the exception of VirB1, all of the proteins that form the putative T-DNA transfer apparatus (VirB1–11, VirD4) are required for an Agrobacterium strain to serve as an RSF1010 donor, expression of only a subset of these proteins is required for the increase in conjugal transfer mediated by the recipient. Specifically, VirB5, 6, 11, and VirD4 are essential donor components but are dispensable for the increased recipient capacity. Defined point mutations in virB9 affected donor and recipient capacities to the same relative extent, suggesting that similar functions of VirB9 are important in both of these contexts.
Resumo:
The level and fate of hMSH3 (human MutS homolog 3) were examined in the promyelocytic leukemia cell line HL-60 and its methotrexate-resistant derivative HL-60R, which is drug resistant by virtue of an amplification event that spans the dihydrofolate reductase (DHFR) and MSH3 genes. Nuclear extracts from HL-60 and HL-60R cells were subjected to an identical, rapid purification protocol that efficiently captures heterodimeric hMutSα (hMSH2⋅hMSH6) and hMutSβ (hMSH2⋅hMSH3). In HL-60 extracts the hMutSα to hMutSβ ratio is roughly 6:1, whereas in methotrexate-resistant HL-60R cells the ratio is less than 1:100, due to overproduction of hMSH3 and heterodimer formation of this protein with virtually all the nuclear hMSH2. This shift is associated with marked reduction in the efficiency of base–base mismatch and hypermutability at the hypoxanthine phosphoribosyltransferase (HPRT) locus. Purified hMutSα and hMutSβ display partial overlap in mismatch repair specificity: both participate in repair of a dinucleotide insertion–deletion heterology, but only hMutSα restores base–base mismatch repair to extracts of HL-60R cells or hMSH2-deficient LoVo colorectal tumor cells.