993 resultados para ELECTRICAL TRANSPORT
Resumo:
Expoxy nanocomposites with multiwell carbon nanotubes (mwcnts) filler up to 0.3%wt were prepared by sheer mixing and good dispersion of the MWCNTS in the epoxy was successfully achieved. The electrical behaviour was characterized by measurements of the alternating current (ac) and direct current (dc) conductives at room temperature. Typical percolation behaviour was observed at a low percolation threshold of 0.055%. Frequency independent ac conductivity was observed at low frequencies but not at high frequencies. An equivalent circuit models was used to predict the impedence response in these nanocomposites.
Resumo:
High growth in the uptake of electrical appliances is accounting for a significant increase in electricity consumption globally. In some developed countries, standby energy alone may account for about 10% of residential electricity use. The standby power for many appliances used in Australia is still well above the national goal of 1 W or less. In this paper, field measurements taken of standby power and operating power for a range of electrical appliances are presented. It was found that the difference between minimum value and maximum value of standby power could be quite large, up to 22.13 W for home theatre systems, for example. With the exception of home audio systems, however, the annual operating energy used by most electrical appliances was generally greater than the annual standby energy. Consumer behaviour and product choice can have a significant impact on standby power and operating power, which influences both energy demand and greenhouse gas emissions.
Resumo:
System analysis within the traction power system is vital to the design and operation of an electrified railway. Loads in traction power systems are often characterised by their mobility, wide range of power variations, regeneration and service dependence. In addition, the feeding systems may take different forms in AC electrified railways. Comprehensive system studies are usually carried out by computer simulation. A number of traction power simulators have been available and they allow calculation of electrical interaction among trains and deterministic solutions of the power network. In the paper, a different approach is presented to enable load-flow analysis on various feeding systems and service demands in AC railways by adopting probabilistic techniques. It is intended to provide a different viewpoint to the load condition. Simulation results are given to verify the probabilistic-load-flow models.
Resumo:
Light Transport Systems (LTS) (e.g lightpipes, fibre optics) can illuminate core areas within buildings with great potential for energy savings. However, they do not provide a clear connection to the outside like windows do, and their effects on people’s physiological and psychological health are not well understood. Furthermore, how people perceive LTS affects users’ acceptance of the device and its performance. The purpose of this research is to understand how occupants perceive and experience spaces illuminated by LTS. Two case studies of commercial buildings with LTS, located in Brisbane, Australia are assessed by qualitative (focus group interviews) and quantitative (measurement of daylight illuminances and luminance) methods. The data from interviews with occupants provide useful insight into the aspects of LTS design that are most relevant to positive perception of the luminous environment. Luminance measurements of the occupied spaces support the perception of the LTS reported by occupants: designs that create high contrast luminous environments are more likely to be perceived negatively.
Resumo:
A schedule coordination problem involving two train services provided by different operators is modeled as an optimization of revenue intake. The coordination is achieved through the adjustment of commencement times of the train services by negotiation. The problem is subject to constraints regarding to passenger demands and idle costs of rolling-stocks from both operators. This paper models the operators as software agents having the flexibility to incorporate one of the two (and potentially more) proposed negotiation strategies. Empirical results show that agents employing different combination of strategies have significant impact on the quality of solution and negotiation time.
Resumo:
Probabilistic load flow techniques have been adopted in AC electrified railways to study the load demand under various train service conditions. This paper highlights the differences in probabilistic load flow analysis between the usual power systems and power supply systems in AC railways; discusses the possible difficulties in problem formulation and presents the link between train movement and the corresponding power demand for load flow calculation.
Resumo:
This paper demonstrates the application of the reliability-centred maintenance (RCM) process to analyse and develop preventive maintenance tasks for electric multiple units (EMU) in the East Rail of the Kowloon-Canton Railway Corporation (KCRC). Two systems, the 25 kV electrical power supply and the air-conditioning system of the EMU, have been chosen for the study. RCM approach on the two systems is delineated step by step in the paper. This study confirms the feasibility and effectiveness of RCM applications on the maintenance of electric trains.
Resumo:
Extensive groundwater withdrawal has resulted in a severe seawater intrusion problem in the Gooburrum aquifers at Bundaberg, Queensland, Australia. Better management strategies can be implemented by understanding the seawater intrusion processes in those aquifers. To study the seawater intrusion process in the region, a two-dimensional density-dependent, saturated and unsaturated flow and transport computational model is used. The model consists of a coupled system of two non-linear partial differential equations. The first equation describes the flow of a variable-density fluid, and the second equation describes the transport of dissolved salt. A two-dimensional control volume finite element model is developed for simulating the seawater intrusion into the heterogeneous aquifer system at Gooburrum. The simulation results provide a realistic mechanism by which to study the convoluted transport phenomena evolving in this complex heterogeneous coastal aquifer.
Resumo:
A high peak power demand at substations will result under Moving Block Signalling (MBS) when a dense queue of trains begins to start from a complete stop at the same time in an electrified railway system. This may cause the power supply interruption and in turn affect the train service substantially. In a recent study, measures of Starting Time Delay (STD) and Acceleration Rate Limit (ARL) are the possible approaches to reduce the peak power demand on the supply system under MBS. Nevertheless, there is no well-defined relationship between the two measures and peak power demand reduction (PDR). In order to attain a lower peak demand at substations on different traffic conditions and system requirements, an expert system is one of the possible approaches to procure the appropriate use of peak demand reduction measures. The main objective of this paper is to study the effect of the train re-starting strategies on the power demand at substations and the time delay suffered by the trains with the aid of computer simulation. An expert system is a useful tool to select various adoptions of STD and ARL under different operational conditions and system requirements.
Resumo:
Measuring the comparative sustainability levels of cities, regions, institutions and projects is an essential procedure in creating sustainable urban futures. This paper introduces a new urban sustainability assessment model: “The Sustainable Infrastructure, Land-use, Environment and Transport Model (SILENT)”. The SILENT Model is an advanced geographic information system and indicator-based comparative urban sustainability indexing model. The model aims to assist planners and policy makers in their daily tasks in sustainable urban planning and development by providing an integrated sustainability assessment framework. The paper gives an overview of the conceptual framework and components of the model and discusses the theoretical constructs, methodological procedures, and future development of this promising urban sustainability assessment model.
Resumo:
Around the world, particularly in North America and Australia, urban sprawl combined with low density suburban development has caused serious accessibility and mobility problems, especially for those who do not own a motor vehicle or have access to public transportation services. Sustainable urban and transportation development is seen crucial in solving transportation disadvantage problems in urban settlements. However, current urban and transportation models have not been adequately addressed unsustainable urban transportation problems that transportation disadvantaged groups overwhelmingly encounter, and the negative impacts on the disadvantaged have not been effectively considered. Transportation disadvantaged is a multi-dimensional problem that combines demographic, spatial and transportation service dimensions. Nevertheless, most transportation models focusing on transportation disadvantage only employ demographic and transportation service dimensions and do not take spatial dimension into account. This paper aims to investigate the link between sustainable urban and transportation development and spatial dimension of the transportation disadvantage problem. The paper, for that purpose, provides a thorough review of the literature and identifies a set of urban, development and policy characteristics to define spatial dimension of the transportation disadvantage problem. This paper presents an overview of these urban, development and policy characteristics that have significant relationships with sustainable urban and transportation development and travel inability, which are also useful in determining transportation disadvantaged populations.
Resumo:
Concentrations of ultrafine (<0.1µm) particles (UFPs) and PM2.5 (<2.5µm) were measured whilst commuting along a similar route by train, bus, ferry and automobile in Sydney, Australia. One trip on each transport mode was undertaken during both morning and evening peak hours throughout a working week, for a total of 40 trips. Analyses comprised one-way ANOVA to compare overall (i.e. all trips combined) geometric mean concentrations of both particle fractions measured across transport modes, and assessment of both the correlation between wind speed and individual trip means of UFPs and PM2.5, and the correlation between the two particle fractions. Overall geometric mean concentrations of UFPs and PM2.5 ranged from 2.8 (train) to 8.4 (bus) × 104 particles cm-3 and 22.6 (automobile) to 29.6 (bus) µg m-3, respectively, and a statistically significant difference (p <0.001) between modes was found for both particle fractions. Individual trip geometric mean concentrations were between 9.7 × 103 (train) and 2.2 × 105 (bus) particles cm-3 and 9.5 (train) to 78.7 (train) µg m-3. Estimated commuter exposures were variable, and the highest return trip mean PM2.5 exposure occurred in the ferry mode, whilst the highest UFP exposure occurred during bus trips. The correlation between fractions was generally poor, and in keeping with the duality of particle mass and number emissions in vehicle-dominated urban areas. Wind speed was negatively correlated with, and a generally poor determinant of, UFP and PM2.5 concentrations, suggesting a more significant role for other factors in determining commuter exposure.
Resumo:
The Streaming SIMD extension (SSE) is a special feature that is available in the Intel Pentium III and P4 classes of microprocessors. As its name implies, SSE enables the execution of SIMD (Single Instruction Multiple Data) operations upon 32-bit floating-point data therefore, performance of floating-point algorithms can be improved. In electrified railway system simulation, the computation involves the solving of a huge set of simultaneous linear equations, which represent the electrical characteristic of the railway network at a particular time-step and a fast solution for the equations is desirable in order to simulate the system in real-time. In this paper, we present how SSE is being applied to the railway network simulation.
Resumo:
Purpose–The aims of this paper are to demonstrate the application of Sen’s theory of well-being, the capability approach; to conceptualise the state of transportation disadvantage; and to underpin a theoretical sounds indicator selection process. Design/methodology/approach–This paper reviews and examines various measurement approaches of transportation disadvantage in order to select indicators and develop an innovative framework of urban transportation disadvantage. Originality/value–The paper provides further understanding of the state of transportation disadvantage from the capability approach perspective. In addition, building from this understanding, a validated and systematic framework is developed to select relevant indicators. Practical implications –The multi-indicator approach has a high tendency to double count for transportation disadvantage, increase the number of TDA population and only accounts each indicator for its individual effects. Instead, indicators that are identified based on a transportation disadvantage scenario will yield more accurate results. Keywords – transport disadvantage, the capability approach, accessibility, measuring urban transportation disadvantage, indicators selection Paper type – Academic Research Paper
Resumo:
In this work, we investigate and compare the Maxwell–Stefan and Nernst–Planck equations for modeling multicomponent charge transport in liquid electrolytes. Specifically, we consider charge transport in the Li+/I−/I3−/ACN ternary electrolyte originally found in dye-sensitized solar cells. We employ molecular dynamics simulations to obtain the Maxwell–Stefan diffusivities for this electrolyte. These simulated diffusion coefficients are used in a multicomponent charge transport model based on the Maxwell– Stefan equations, and this is compared to a Nernst–Planck based model which employs binary diffusion coefficients sourced from the literature. We show that significant differences between the electrolyte concentrations at electrode interfaces, as predicted by the Maxwell–Stefan and Nernst–Planck models, can occur. We find that these differences are driven by a pressure term that appears in the Maxwell–Stefan equations. We also investigate what effects the Maxwell–Stefan diffusivities have on the simulated charge transport. By incorporating binary diffusivities found in the literature into the Maxwell–Stefan framework, we show that the simulated transient concentration profiles depend on the diffusivities; however, the simulated equilibrium profiles remain unaffected.