924 resultados para Divergence time estimation
Resumo:
A method has been developed to estimate aerosol optical depth (AOD) over land surfaces using high spatial resolution, hyperspectral, and multiangle Compact High Resolution Imaging Spectrometer (CHRIS)/Project for On Board Autonomy (PROBA) images. The CHRIS instrument is mounted aboard the PROBA satellite and provides up to 62 bands. The PROBA satellite allows pointing to obtain imagery from five different view angles within a short time interval. The method uses inversion of a coupled surface/atmosphere radiative transfer model and includes a general physical model of angular surface reflectance. An iterative process is used to determine the optimum value providing the best fit of the corrected reflectance values for a number of view angles and wavelengths with those provided by the physical model. This method has previously been demonstrated on data from the Advanced Along-Track Scanning Radiometer and is extended here to the spectral and angular sampling of CHRIS/PROBA. The values obtained from these observations are validated using ground-based sun-photometer measurements. Results from 22 image sets show an rms error of 0.11 in AOD at 550 nm, which is reduced to 0.06 after an automatic screening procedure.
Resumo:
Factor forecasting models are shown to deliver real-time gains over autoregressive models for US real activity variables during the recent period, but are less successful for nominal variables. The gains are largely due to the Financial Crisis period, and are primarily at the shortest (one quarter ahead) horizon. Excluding the pre-Great Moderation years from the factor forecasting model estimation period (but not from the data used to extract factors) results in a marked fillip in factor model forecast accuracy, but does the same for the AR model forecasts. The relative performance of the factor models compared to the AR models is largely unaffected by whether the exercise is in real time or is pseudo out-of-sample.
Resumo:
This article draws on ongoing research in the Maldives to explore differences between elite and non-elite perceptions of climate change and migration. It argues that, in addition to variations in perceptions based on diverse knowledge, priorities and agendas, there exists a more fundamental divergence based upon different understandings of the time-scale of climate change and related ideas of urgency and crisis. Specifically, elites tend to focus on a distant future which is generally abstracted from people’s everyday lived realities, as well as utilise the language of a climate change-induced migration ‘crisis’ in their discussions about impacts in a manner not envisaged by non-elites. The article concludes that, rather than unproblematically mapping global, external facing narratives wholesale onto ordinary people’s lives and experiences, there needs to be more dialogue between elites and non-elites on climate change and migration issues. These perspectives should be integrated more effectively in the development of policy interventions designed to help people adapt to the impacts of global environmental change.
Resumo:
Flowering time and seed size are traits related to domestication. However, identification of domestication-related loci/genes of controlling the traits in soybean is rarely reported. In this study, we identified a total of 48 domestication-related loci based on RAD-seq genotyping of a natural population comprising 286 accessions. Among these, four on chromosome 12 and additional two on chromosomes 11 and 15 were associated with flowering time, and four on chromosomes 11 and 16 were associated with seed size. Of the five genes associated with flowering time and the three genes associated with seed size, three genes Glyma11g18720, Glyma11g15480 and Glyma15g35080 were homologous to Arabidopsis genes, additional five genes were found for the first time to be associated with these two traits. Glyma11g18720 and Glyma05g28130 were co-expressed with five genes homologous to flowering time genes in Arabidopsis, and Glyma11g15480 was co-expressed with 24 genes homologous to seed development genes in Arabidopsis. This study indicates that integration of population divergence analysis, genome-wide association study and expression analysis is an efficient approach to identify candidate domestication-related genes.
Resumo:
A new class of parameter estimation algorithms is introduced for Gaussian process regression (GPR) models. It is shown that the integration of the GPR model with probability distance measures of (i) the integrated square error and (ii) Kullback–Leibler (K–L) divergence are analytically tractable. An efficient coordinate descent algorithm is proposed to iteratively estimate the kernel width using golden section search which includes a fast gradient descent algorithm as an inner loop to estimate the noise variance. Numerical examples are included to demonstrate the effectiveness of the new identification approaches.
Resumo:
Eddy covariance has been used in urban areas to evaluate the net exchange of CO2 between the surface and the atmosphere. Typically, only the vertical flux is measured at a height 2–3 times that of the local roughness elements; however, under conditions of relatively low instability, CO2 may accumulate in the airspace below the measurement height. This can result in inaccurate emissions estimates if the accumulated CO2 drains away or is flushed upwards during thermal expansion of the boundary layer. Some studies apply a single height storage correction; however, this requires the assumption that the response of the CO2 concentration profile to forcing is constant with height. Here a full seasonal cycle (7th June 2012 to 3rd June 2013) of single height CO2 storage data calculated from concentrations measured at 10 Hz by open path gas analyser are compared to a data set calculated from a concurrent switched vertical profile measured (2 Hz, closed path gas analyser) at 10 heights within and above a street canyon in central London. The assumption required for the former storage determination is shown to be invalid. For approximately regular street canyons at least one other measurement is required. Continuous measurements at fewer locations are shown to be preferable to a spatially dense, switched profile, as temporal interpolation is ineffective. The majority of the spectral energy of the CO2 storage time series was found to be between 0.001 and 0.2 Hz (500 and 5 s respectively); however, sampling frequencies of 2 Hz and below still result in significantly lower CO2 storage values. An empirical method of correcting CO2 storage values from under-sampled time series is proposed.
Resumo:
In numerical weather prediction, parameterisations are used to simulate missing physics in the model. These can be due to a lack of scientific understanding or a lack of computing power available to address all the known physical processes. Parameterisations are sources of large uncertainty in a model as parameter values used in these parameterisations cannot be measured directly and hence are often not well known; and the parameterisations themselves are also approximations of the processes present in the true atmosphere. Whilst there are many efficient and effective methods for combined state/parameter estimation in data assimilation (DA), such as state augmentation, these are not effective at estimating the structure of parameterisations. A new method of parameterisation estimation is proposed that uses sequential DA methods to estimate errors in the numerical models at each space-time point for each model equation. These errors are then fitted to pre-determined functional forms of missing physics or parameterisations that are based upon prior information. We applied the method to a one-dimensional advection model with additive model error, and it is shown that the method can accurately estimate parameterisations, with consistent error estimates. Furthermore, it is shown how the method depends on the quality of the DA results. The results indicate that this new method is a powerful tool in systematic model improvement.
Resumo:
The primary objective of this research study is to determine which form of testing, the PEST algorithm or an operator-controlled condition is most accurate and time efficient for administration of the gaze stabilization test
Resumo:
Weather conditions in critical periods of the vegetative crop development influence crop productivity, thus being a basic parameter for crop forecast. Reliable extended period weather forecasts may contribute to improve the estimation of agricultural productivity. The production of soybean plays an important role in the Brazilian economy, because this country is ranked among the largest producers of soybeans in the world. This culture can be significantly affected by water conditions, depending on the intensity of water deficit. This work explores the role of extended period weather forecasts for estimating soybean productivity in the southern part of Brazil, Passo Fundo, and Londrina (State of Rio Grande do Sul and Parana, respectively) in the 2005/2006 harvest. The goal was to investigate the possible contribution of precipitation forecasts as a substitute for the use of climatological data on crop forecasts. The results suggest that the use of meteorological forecasts generate more reliable productivity estimates during the growth period than those generated only through climatological information.
Resumo:
We have used coalescent analysis of mtDNA cytochrome b (cyt b) sequences to estimate times of divergence of three species of Alouatta-A. caraya, A. belzebul, and A. guariba-which are in close geographic proximity. A. caraya is inferred to have diverged from the A. guariba/A. belzebul clade approximately 3.83 million years ago (MYA), with the later pair diverging approximately 1.55 MYA. These dates are much more recent than previous dates based on molecular-clock methods. In addition, analyses of new sequences from the Atlantic Coastal Forest species A. guariba indicate the presence of two distinct haplogroups corresponding to northern and southern populations with both haplogroups occurring in sympatry within Sao Paulo state. The time of divergence of these two haplogroups is estimated to be 1.2 MYA and so follows quite closely after the divergence of A. guariba and A. belzebul. These more recent dates point to the importance of Pleistocene environmental events as important factors in the diversification of A. belzebul and A. guariba. We discuss the diversification of the three Alouatta species in the context of recent models of climatic change and with regard to recent molecular phylogeographic analyses of other animal groups distributed in Brazil.
Resumo:
The purpose of this paper is to develop a Bayesian analysis for nonlinear regression models under scale mixtures of skew-normal distributions. This novel class of models provides a useful generalization of the symmetrical nonlinear regression models since the error distributions cover both skewness and heavy-tailed distributions such as the skew-t, skew-slash and the skew-contaminated normal distributions. The main advantage of these class of distributions is that they have a nice hierarchical representation that allows the implementation of Markov chain Monte Carlo (MCMC) methods to simulate samples from the joint posterior distribution. In order to examine the robust aspects of this flexible class, against outlying and influential observations, we present a Bayesian case deletion influence diagnostics based on the Kullback-Leibler divergence. Further, some discussions on the model selection criteria are given. The newly developed procedures are illustrated considering two simulations study, and a real data previously analyzed under normal and skew-normal nonlinear regression models. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this paper is to develop a Bayesian approach for log-Birnbaum-Saunders Student-t regression models under right-censored survival data. Markov chain Monte Carlo (MCMC) methods are used to develop a Bayesian procedure for the considered model. In order to attenuate the influence of the outlying observations on the parameter estimates, we present in this paper Birnbaum-Saunders models in which a Student-t distribution is assumed to explain the cumulative damage. Also, some discussions on the model selection to compare the fitted models are given and case deletion influence diagnostics are developed for the joint posterior distribution based on the Kullback-Leibler divergence. The developed procedures are illustrated with a real data set. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Most studies involving statistical time series analysis rely on assumptions of linearity, which by its simplicity facilitates parameter interpretation and estimation. However, the linearity assumption may be too restrictive for many practical applications. The implementation of nonlinear models in time series analysis involves the estimation of a large set of parameters, frequently leading to overfitting problems. In this article, a predictability coefficient is estimated using a combination of nonlinear autoregressive models and the use of support vector regression in this model is explored. We illustrate the usefulness and interpretability of results by using electroencephalographic records of an epileptic patient.
Resumo:
We discuss the estimation of the expected value of the quality-adjusted survival, based on multistate models. We generalize an earlier work, considering the sojourn times in health states are not identically distributed, for a given vector of covariates. Approaches based on semiparametric and parametric (exponential and Weibull distributions) methodologies are considered. A simulation study is conducted to evaluate the performance of the proposed estimator and the jackknife resampling method is used to estimate the variance of such estimator. An application to a real data set is also included.
Resumo:
In clinical trials, it may be of interest taking into account physical and emotional well-being in addition to survival when comparing treatments. Quality-adjusted survival time has the advantage of incorporating information about both survival time and quality-of-life. In this paper, we discuss the estimation of the expected value of the quality-adjusted survival, based on multistate models for the sojourn times in health states. Semiparametric and parametric (with exponential distribution) approaches are considered. A simulation study is presented to evaluate the performance of the proposed estimator and the jackknife resampling method is used to compute bias and variance of the estimator. (C) 2007 Elsevier B.V. All rights reserved.