972 resultados para Dislocation density


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Designing an ultrahigh density linear superlattice array consisting of periodic blocks of different semiconductors in the strong confinement regime via a direct synthetic route remains an unachieved challenge in nanotechnology. We report a general synthesis route for the formulation of a large-area ultrahigh density superlattice array that involves adjoining multiple units of ZnS rods by prolate US particles at the tips. A single one-dimensional wire is 300-500 nm long and consists of periodic quantum wells with a barrier width of 5 nm provided by ZnS and a well width of 1-2 nm provided by CdS, defining a superlattice structure. The synthesis route allows for tailoring of ultranarrow laserlike emissions (fwhm approximate to 125 meV) originating from strong interwell energy dispersion along with control of the width, pitch, and registry of the superlattice assembly. Such an exceptional high-density superlattice array could form the basis of ultrahigh density memories in addition to offering opportunities for technological advancement in conventional heterojunction-based device applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we first present the 'wet N2O' furnace oxidation process to grow nitrided tunnel oxides in the thickness range 6 to 8 nm on silicon at a temperature of 800 degrees C. Electrical characteristics of MOS capacitors and MOSFETs fabricated using this oxide as gate oxide have been evaluated and the superior features of this oxide are ascertained The frequency response of the interface states, before and after subjecting the MOSFET gate oxide to constant current stress, is studied using a simple analytical model developed in this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of shaking table tests on model reinforced soil retaining walls in the laboratory. The influence of backfill relative density on the seismic response was studied through a series of laboratory model tests on retaining walls. Construction of model retaining walls in the laminar box mounted on shaking table, instrumentation and results from the shaking table tests are described in detail. Three types of walls: wrap- and rigid-faced reinforced soil walls and unreinforced rigid-faced walls constructed to different densities were tested for a relatively small excitation. Wrap-faced walls are further tested for higher base excitation at different frequencies and relative densities. It is observed from these tests that the effect of backfill density on the seismic performance of reinforced retaining walls is pronounced only at very low relative density and at the higher base excitation. The walls constructed with higher backfill relative density showed lesser face deformations and more acceleration amplifications compared to the walls constructed with lower densities when tested at higher base excitation. The response of wrap- and rigid-faced retaining walls is not much affected by the backfill relative density when tested at smaller base excitation. The effects of facing rigidity were evaluated to a limited extent. Displacements in wrap-faced walls are many times higher compared to rigid-faced walls. The results obtained from this study are helpful in understanding the relative performance of reinforced soil retaining walls constructed to when subjected to smaller and higher base excitation for the range of relative density employed in the testing program. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Foliage density and leaf area index are important vegetation structure variables. They can be measured by several methods but few have been tested in tropical forests which have high structural heterogeneity. In this study, foliage density estimates by two indirect methods, the point quadrat and photographic methods, were compared with those obtained by direct leaf counts in the understorey of a wet evergreen forest in southern India. The point quadrat method has a tendency to overestimate, whereas the photographic method consistently and ignificantly underestimates foliage density. There was stratification within the understorey, with areas close to the ground having higher foliage densities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified density matrix renormalization group (DMRG) algorithm is applied to the zigzag spin-1/2 chain with frustrated antiferromagnetic exchange J(1) and J(2) between first and second neighbors. The modified algorithm yields accurate results up to J(2)/J(1) approximate to 4 for the magnetic gap Delta to the lowest triplet state, the amplitude B of the bond order wave phase, the wavelength lambda of the spiral phase, and the spin correlation length xi. The J(2)/J(1) dependences of Delta, B, lambda, and xi provide multiple comparisons to field theories of the zigzag chain. The twist angle of the spiral phase and the spin structure factor yield additional comparisons between DMRG and field theory. Attention is given to the numerical accuracy required to obtain exponentially small gaps or exponentially long correlations near a quantum phase transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental charge density distributions in two known conformational polymorphs (orange and yellow) of coumarin 314 dye are analyzed based on multipole modeling of X-ray diffraction data collected at 100 K. The experimental results are compared with the charge densities derived from multipole modeling of theoretical structure factors obtained from periodic quantum calculation with density functional theory (DFT) method and B3LYP/6-31G(d,p) level of theory. The presence of disorder at the carbonyl oxygen atom of ethoxycarbonyl group in the yellow form, which was not identified earlier, is addressed here. The investigationof intermolecular interactions, based on Hirshfeld surface analysis and topological properties via quantum theory of atoms in molecule and total electrostatic interaction energies, revealed significant differences between the polymorphs. The differences of electrostatic nature in these two polymorphic forms were unveiled via construction of three-dimensional deformation electrostatic potential maps plotted over the molecular surfaces. The lattice energies evaluated from ab initio calculations on the two polymorphic forms indicate that the yellow form is likely to be the most favorable thermodynamically. The dipole moments derived from experimental and theoretical charge densities and also from Lorentz tensor approach are compared with the single-molecule dipole moments. In each case, the differences of dipole moments between the polymorphs are identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evaluation of intermolecular interactions in terms of both experimental and theoretical charge density analyses has produced a unified picture with which to classify strong and weak hydrogen bonds, along with van der Waals interactions, into three regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lignin was graft copolymerized with methyl methacrylate using manganic pyrophosphate as initiator. This modified lignin was then blended (up to 50 wt%) with low density polyethylene (LDPE) using a small quantity of poly[ethylene-co-(glycidyl methacrylate)] (PEGMA) compatibilizer. The mechanical properties of the blend were substantially improved by using modified lignin in contrast to untreated lignin. Differential scanning calorimetry studies showed loss of crystallinity of the LDPE phase owing to the interaction between the blend components. Thermogravimetric analysis showed higher thermal stability of modified lignin in the domain of blend processing. This suggested that there is scope for useful utilization of lignin, which could also lead to the development of eco-friendly products. (c) 2005 Society of Chemical Industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ramberg-Osgood type constitutive law for creep suggested by Iyengar2 has been verified on high-density polyethylene. The time functions are evaluated from the experimental data of Scheweiker and Sidebottom3. It is found that the creep behaviour of the above material can be represented by the Ramberg-Osgood type law.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A density-functional approach on the hexagonal graphene lattice is developed using an exact numerical solution to the Hubbard model as the reference system. Both nearest-neighbour and up to third nearest-neighbour hoppings are considered and exchange-correlation potentials within the local density approximation are parameterized for both variants. The method is used to calculate the ground-state energy and density of graphene flakes and infinite graphene sheet. The results are found to agree with exact diagonalization for small systems, also if local impurities are present. In addition, correct ground-state spin is found in the case of large triangular and bowtie flakes out of the scope of exact diagonalization methods.