940 resultados para Digestive enzymes.
Resumo:
This paper describes the impact of cloud computing and the use of GPUs on the performance of Autodock and Gromacs respectively. Cloud computing was applicable to reducing the ‘‘tail’’ seen in running Autodock on desktop grids and the GPU version of Gromacs showed significant improvement over the CPU version. A large (200,000 compounds) library of small molecules, seven sialic acid analogues of the putative substrate and 8000 sugar molecules were converted into pdbqt format and used to interrogate the Trichomonas vaginalis neuraminidase using Autodock Vina. Good binding energy was noted for some of the small molecules (~-9 kcal/mol), but the sugars bound with affinity of less than -7.6 kcal/mol. The screening of the sugar library resulted in a ‘‘top hit’’ with a-2,3-sialyllacto-N-fucopentaose III, a derivative of the sialyl Lewisx structure and a known substrate of the enzyme. Indeed in the top 100 hits 8 were related to this structure. A comparison of Autodock Vina and Autodock 4.2 was made for the high affinity small molecules and in some cases the results were superimposable whereas in others, the match was less good. The validation of this work will require extensive ‘‘wet lab’’ work to determine the utility of the workflow in the prediction of potential enzyme inhibitors.
Resumo:
Among organic pollutants existing in coastal areas, polycyclic aromatic hydrocarbons (PAHs) are of great concern due to their ubiquity and carcinogenic potential. The aim of this study was to evaluate the seasonal patterns of PAHs in the digestive gland and arm of the common octopus (Octopus vulgaris) from the Northwest Atlantic Portuguese coast. In the different seasons, 18 PAHs were determined and the detoxification capacity of the species was evaluated. Ethoxyresorufin O-deethylase (EROD) and ethoxycoumarin O-deethylase (ECOD) activities were measured to assess phase I biotransformation capacity. Individual PAH ratios were used for major source (pyrolytic/petrogenic) analysis. Risks for human consumption were determined by the total toxicity equivalence approach. Generally, low levels of PAHs were detected in the digestive gland and in the arm of octopus, with a predominance of low molecular over high molecular weight compounds. PAHs exhibited seasonality in the concentrations detected and in their main emission sources. In the digestive gland, the highest total PAH levels were observed in autumn possibly related to fat availability in the ecosystem and food intake. The lack of PAH elimination observed in the digestive gland after captivity could be possibly associated to a low biotransformation capacity, consistent with the negligible/undetected levels of EROD and ECOD activity in the different seasons. The emission sources of PAHs found in the digestive gland varied from a petrogenic profile observed in winter to a pyrolytic pattern in spring. In the arm, the highest PAH contents were observed in June; nevertheless, levels were always below the regulatory limits established for food consumption. The carcinogenic potential calculated for all the sampling periods in the arm were markedly lower than the ones found in various aquatic species from different marine environments. The results presented in this study give relevant baseline data for environmental monitoring of organic pollution in coastal areas.
Resumo:
Dissertation presented to obtain a Doctoral Degree in Biology by Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
Dissertação para a obtenção de grau de doutor em Biologia pelo Instituto de Tecnologia Química e Biológica. Universidade Nova de Lisboa.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biochemistry, Structural Biochemistry
Resumo:
Carcinoembryonic antigen (CEA), immunologically identical to CEA derived from colonic carcinoma, was identified and purified from perchloric acid (PCA) extracts of bronchial and mammary carcinoma. CEA extracted from bronchial and mammary carcinoma was quantitated by single radial immunodiffusion and was found to be in average about 50-75 times less abundant in these tumors than in colonic carcinoma. CEA could also be detected in one normal breast in lactation and at lower concentrations in normal lung (1000-4000 times lower than in colonic carcinoma). The small amounts of CEA present in normal tissues are distinct from the glycoprotein of small mol. wt showing only partial identity with CEA, that we recently identified and extracted in much larger quantities from normal lung and spleen. The demonstration of the presence of CEA in non digestive carcinoma by classical gel precipitation analysis suggests that the CEA detected in the plasma of such patients by radioimmunoassay is also identical to colonic carcinoma CEA. Our comparative study of plasma CEA from bronchial and colonic carcinoma, showing that CEA from both types of patient has the same elution pattern on Sephadex G-200 and gives parallel inhibition curves in the radioimmunoassay, is in favor of this hypothesis. However, it should not be concluded that all positive CEA radioimmunoassay indicate the presence of an antigen identical to colonic carcinoma CEA. A word of warning concerning the interpretation of radioimmunoassay is required by the observation that the addition of mg amounts of PCA extract of normal plasma, cleared of CEA by Sephadex filtration, could interfere in the test and mimic the presence of CEA.
Resumo:
OBJECTIVE: Lipids stored in adipose tissue can originate from dietary lipids or from de novo lipogenesis (DNL) from carbohydrates. Whether DNL is abnormal in adipose tissue of overweight individuals remains unknown. The present study was undertaken to assess the effect of carbohydrate overfeeding on glucose-induced whole body DNL and adipose tissue lipogenic gene expression in lean and overweight humans. DESIGN: Prospective, cross-over study. SUBJECTS AND METHODS: A total of 11 lean (five male, six female, mean BMI 21.0+/-0.5 kg/m(2)) and eight overweight (four males, four females, mean BMI 30.1+/-0.6 kg/m(2)) volunteers were studied on two occasions. On one occasion, they received an isoenergetic diet containing 50% carbohydrate for 4 days prior to testing; on the other, they received a hyperenergetic diet (175% energy requirements) containing 71% carbohydrates. After each period of 4 days of controlled diet, they were studied over 6 h after having received 3.25 g glucose/kg fat free mass. Whole body glucose oxidation and net DNL were monitored by means of indirect calorimetry. An adipose tissue biopsy was obtained at the end of this 6-h period and the levels of SREBP-1c, acetyl CoA carboxylase, and fatty acid synthase mRNA were measured by real-time PCR. RESULTS: After isocaloric feeding, whole body net DNL amounted to 35+/-9 mg/kg fat free mass/5 h in lean subjects and to 49+/-3 mg/kg fat free mass/5 h in overweight subjects over the 5 h following glucose ingestion. These figures increased (P<0.001) to 156+/-21 mg/kg fat free mass/5 h in lean and 64+/-11 mg/kg fat free mass/5 h (P<0.05 vs lean) in overweight subjects after carbohydrate overfeeding. Whole body DNL after overfeeding was lower (P<0.001) and glycogen synthesis was higher (P<0.001) in overweight than in normal subjects. Adipose tissue SREBP-1c mRNA increased by 25% in overweight and by 43% in lean subjects (P<0.05) after carbohydrate overfeeding, whereas fatty acid synthase mRNA increased by 66 and 84% (P<0.05). CONCLUSION: Whole body net DNL is not increased during carbohydrate overfeeding in overweight individuals. Stimulation of adipose lipogenic enzymes is also not higher in overweight subjects. Carbohydrate overfeeding does not stimulate whole body net DNL nor expression of lipogenic enzymes in adipose tissue to a larger extent in overweight than lean subjects.
Resumo:
Beta-oxidation of the conjugated linoleic acid 9-cis,11-trans-octadecadienoic acid (rumenic acid) was analyzed in vivo in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanoate is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxyacyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The amount of polyhydroxyalkanaote synthesized from the degradation of rumenic acid was found to be similar to the amount synthesized from the degradation of 10-trans,12-cis-octadecadienoic acid, oleic acid or 10-cis-heptadecenoic acid. Furthermore, the degradation of 10-cis-heptadecenoic acid was found to be unaffected by the presence of rumenic acid in the media. Efficient degradation of rumenic acid was found to be independent of the Delta(3,5),Delta(2,4)-dienoyl-CoA isomerase but instead relied on the presence of Delta(3),Delta(2)-enoyl-CoA isomerase activity. The presence of the unsaturated monomer 3-hydroxydodecenoic acid in polyhydroxyalkanoate derived from rumenic acid degradation was found to be dependent on the presence of a Delta(3),Delta(2)-enoyl-CoA isomerase activity. Together, these data indicate that rumenic acid is mainly degraded in vivo in S. cerevisiae through a pathway requiring only the participation of the auxiliary enzymes Delta(3),Delta(2)-enoyl-CoA isomerase, along with the enzyme of the core beta-oxidation cycle.
Resumo:
Two groups of rainbow trout were acclimated to 20 , 100 , and 18 o C. Plasma sodium, potassium, and chloride levels were determined for both. One group was employed in the estimation of branchial and renal (Na+-K+)-stimulated, (HC0 3-)-stimulated, and CMg++)-dependent ATPase activities, while the other was used in the measurement of carbonic anhydrase activity in the blood, gill and kidney. Assays were conducted using two incubation temperature schemes. One provided for incubation of all preparations at a common temperature of 2S oC, a value equivalent to the upper incipient lethal level for this species. In the other procedure the preparations were incubated at the appropriate acclimation temperature of the sampled fish. Trout were able to maintain plasma sodium and chloride levels essentially constant over the temperature range employed. The different incubation temperature protocols produced different levels of activity, and, in some cases, contrary trends with respect to acclimation temperature. This information was discussed in relation to previous work on gill and kidney. The standing-gradient flow hypothesis was discussed with reference to the structure of the chloride cell, known thermallyinduced changes in ion uptake, and the enzyme activities obtained in this study. Modifications of the model of gill lon uptake suggested by Maetz (1971) were proposed; high and low temperature models resulting. In short, ion transport at the gill at low temperatures appears to involve sodium and chloride 2 uptake by heteroionic exchange mechanisms working in association w.lth ca.rbonlc anhydrase. G.l ll ( Na + -K + ) -ATPase and erythrocyte carbonic anhydrase seem to provide the supplemental uptake required at higher temperatures. It appears that the kidney is prominent in ion transport at low temperatures while the gill is more important at high temperatures. 3 Linear regression analyses involving weight, plasma ion levels, and enzyme activities indicated several trends, the most significant being the interrelationship observed between plasma sodium and chloride. This, and other data obtained in the study was considered in light of the theory that a link exists between plasma sodium and chloride regulatory mechanisms.
Resumo:
Agaricus bisporus is the most commonly cultivated mushroom in North America and has a great economic value. Green mould is a serious disease of A. bisporus and causes major reductions in mushroom crop production. The causative agent of green mould disease in North America was identified as Trichoderma aggressivum f. aggressivum. Variations in the disease resistance have been shown in the different commercial mushroom strains. The purpose of this study is to continue investigations of the interactions between T. aggressivum and A. bisporus during the development of green mould disease. The main focus of the research was to study the roles of cell wall degrading enzymes in green mould disease resistance and pathogenesis. First, we tried to isolate and sequence the N-acetylglucosaminidase from A. bisporus to understand the defensive mechanism of mushroom against the disease. However, the lack of genomic and proteomic information of A. bisporus limited our efforts. Next, T. aggressivum cell wall degrading enzymes that are thought to attack Agaricus and mediate the disease development were examined. The three cell wall degrading enzymes genes, encoding endochitinase (ech42), glucanase (fJ-1,3 glucanase) and protease (prb 1), were isolated and sequenced from T. aggressivum f. aggressivum. The sequence data showed significant homology with the corresponding genes from other fungi including Trichoderma species. The transcription levels of the three T. aggressivum cell wall degrading enzymes were studied during the in vitro co-cultivation with A. bisporus using R T -qPCR. The transcription levels of the three genes were significantly upregulated compared to the solitary culture levels but were upregulated to a lesser extent in co-cultivation with a resistant strain of A. bisporus than with a sensitive strain. An Agrobacterium tumefaciens transformation system was developed for T. aggressivum and was used to transform three silencing plasmids to construct three new T. aggressivum phenotypes, each with a silenced cell wall degrading enzyme. The silencing efficiency was determined by RT-qPCR during the individual in vitro cocultivation of each of the new phenotypes with A. bisporus. The results showed that the expression of the three enzymes was significantly decreased during the in vitro cocultivation when compared with the wild type. The phenotypes were co-cultivated with A. bisporus on compost with monitoring the green mould disease progression. The data indicated that prbi and ech42 genes is more important in disease progression than the p- 1,3 glucanase gene. Finally, the present study emphasises the role of the three cell wall degrading enzymes in green mould disease infection and may provide a promising tool for disease management.
Resumo:
In animals, both stress resistance and longevity appear to be influenced by the insulin/insulin-like growth factor-l signaling (lIS) pathway, the basic organization of which is highly conserved from invertebrates to vertebrates. Reduced lIS or genetic disruption of the lIS pathway leads to the activation of forkhead box transcription factors, which is thought to upregulate the expression of genes involved in enhancing stress resistance, including perhaps key antioxidant enzymes as well as DNA repair enzymes. Enhanced antioxidant and DNA repair capacities may underlie the enhanced cellular stress resistance observed in long-lived animals, however little data is available that directly supports this idea. I used three. experimental approaches to test the association of intracellular antioxidant and DNA base excision repair (BER) capacities with stress resistance and longevity: (1) a comparison of multiple vertebrate endotherm species of varying body masses and longevities; (2) a comparison of long-lived Snell dwarf mice and their normallittermates; and (3) a comparison of hypometabolic animals undergoing hibernation or estivation with their active counterparts. The activities of the five major intracellular antioxidant enzymes as well as the two rate-limiting enzymes in the BER pathway, apurininc/apyrimidinic (AP) endonuclease and polymerase ~, were measured. These measurements were performed in one or more of the following: (1) cultured dermal fibroblasts; (2) brain tissue; (3) heart tissue; (4) liver tissue. My results indicate that antioxidant enzymes are not universally upregulated in association with enhanced stress resistance and longevity. I also did not find that BER enzyme activity was positively correlated with longevity, in an inter-species context, though there was evidence for enhanced BER in long-lived Snell dwarf mice. Thus, while there were instances in which enhanced antioxidant and BER enzyme activities were associated with increased stress resistance and/or longevity, this was not universally the case, indicating that other mechanisms must be involved. These results suggest the need to re-examine existing 'oxidative stress' hypotheses of longevity and probe further into the molecular physiology of longevity to discover its mechanistic basis.
Resumo:
The plant family Apocynaceae accumulates thousands of monoterpene indole alkaloids (MIAs) which originate, biosynthetically, from the common secoiridoid intermediate, strictosidine, that is formed from the condensation of tryptophan and secologanin molecules. MIAs demonstrate remarkable structural diversity and have pharmaceutically valuable biological activities. For example; a subunit of the potent anti-neoplastic molecules vincristine and vinblastine is the aspidosperma alkaloid, vindoline. Vindoline accumulates to trace levels under natural conditions. Research programs have determined that there is significant developmental and light regulation involved in the biosynthesis of this MIA. Furthermore, the biosynthetic pathway leading to vindoline is split among at least five independent cell types. Little is known of how intermediates are shuttled between these cell types. The late stage events in vindoline biosynthesis involve six enzymatic steps from tabersonine. The fourth biochemical step, in this pathway, is an indole N-methylation performed by a recently identified N-methyltransfearse (NMT). For almost twenty years the gene encoding this NMT had eluded discovery; however, in 2010 Liscombe et al. reported the identification of a γ-tocopherol C-methyltransferase homologue capable of indole N-methylating 2,3-dihydrotabersonine and Virus Induced Gene Silencing (VIGS) suppression of the messenger has since proven its involvement in vindoline biosynthesis. Recent large scale sequencing initiatives, performed on non-model medicinal plant transcriptomes, has permitted identification of candidate genes, presumably involved, in MIA biosynthesis never seen before in plant specialized metabolism research. Probing the transcriptome assemblies of Catharanthus roseus (L.)G.Don, Vinca minor L., Rauwolfia serpentine (L.)Benth ex Kurz, Tabernaemontana elegans, and Amsonia hubrichtii, with the nucleotide sequence of the N-methyltransferase involved in vindoline biosynthesis, revealed eight new homologous methyltransferases. This thesis describes the identification, molecular cloning, recombinant expression and biochemical characterization of two picrinine NMTs, one from V. minor and one from R. serpentina, a perivine NMT from C. roseus, and an ajmaline NMT from R. serpentina. While these TLMTs were expressed and functional in planta, they were active at relatively low levels and their N-methylated alkaloid products were not apparent our from alkaloid isolates of the plants. It appears that, for the most part, these TLMTs, participate in apparently silent biochemical pathways, awaiting the appropriate developmental and environmental cues for activity.
Resumo:
The maximum lifespan (MLSP) of endothermic vertebrates can range from as little as a year to over two centuries, yet the underlying phenotype of aging is very similar amongst this group of organisms. One organelle that may be important in the phenotype of aging is the mitochondrion. When damaged, this organelle is thought to contribute to many of the neurodegenerative diseases of aging. For this thesis, mitochondria from brain tissues of 7 mammalian and 2 avian species were isolated to assess whether the antioxidant glutathione system and major molecular chaperone, HSP60, is correlated to species MLSP. Furthermore, HSP60, and the major endoplasmic reticulum chaperone, GRP78, were measured under basal conditions, and following the introduction of an oxidative stress (hydrogen peroxide) in cultured mammalian myoblasts from 10 different species. My results indicate that the enzymes involved in the glutathione defense system are not correlated to species MLSP in brain mitochondria; however HSP60 levels are indeed higher in the longer-lived species. HSP60 levels are also higher at the basal level in cultured mammalian myoblasts and after 1 hour of hydrogen peroxide exposure. GRP78 induction is not correlated to species MLSP at the basal level or following hydrogen peroxide exposure. Therefore, these results suggest that HSP60 is a correlate of longevity in endothermic vertebrate species, but neither the glutathione antioxidant defense system, nor GRP78, correlates to species longevity.