982 resultados para Deuteric fluids
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Congenital pathologies are those existing at or dating from birth. Occurrence of congenital cystic lesions in the oral cavity is uncommon in neonates. Eruption cyst (EC) is listed among these unusual lesions. It occurs within the mucosa overlying teeth that are about to erupt and, according to the current World Health Organization (WHO) classification of epithelial cysts of the jaws, EC is a separate entity. This paper presents a case of congenital EC successfully managed by close monitoring of the lesion, without any surgical procedure or tooth extraction. Eruption of the teeth involved, primary central incisors, occurred at the fourth month of age. During this time neither the child nor mother had any complication such as pain on sucking, refusal to feed, airway obstruction, or aspiration of fluids or teeth.
Resumo:
The steady-state heat transfer in laminar flow of liquid egg yolk - an important pseudoplastic fluid food - in circular and concentric annular ducts was experimentally investigated. The average convection heat transfer coefficients, determined by measuring temperatures before and after heating sections with constant temperatures at the tube wall, were used to obtain simple new empirical expressions to estimate the Nusselt numbers for fully established flows at the thermal entrance of the considered geometries. The comparisons with existing correlations for Newtonian and non-Newtonian fluids resulted in excellent agreement. The main contribution of this work is to supply practical and easily applicable correlations, which are, especially for the case of annulus, rather scarce and extensively required in the design of heat transfer operations dealing with similar shear-thinning products. In addition, the experimental results may support existing theoretical analyses.
Resumo:
We describe the experimental apparatus and the methods to achieve Bose-Einstein condensation in 87Rb atoms. Atoms are first laser cooled in a standard double magneto-optical trap setup and then transferred into a QUIC trap. The system is brought to quantum degeneracy selectively removing the hottest atoms from the trap by radio-frequency radiation. We also present the main theoretical aspects of the Bose-Einstein condensation phenomena in atomic gases.
Resumo:
This work aims at the geochemical study of Pitinga cryolite mineralization through REE and Y analyses in disseminated and massive cryolite ore deposits, as well as in fluorite occurrences. REE signatures in fluorite and cryolite are similar to those in the Madeira albite granite. The highest ΣREE values are found in magmatic cryolite (677 to 1345 ppm); ΣREE is lower in massive cryolite. Average values for the different cryolite types are 10.3 ppm, 6.66 ppm and 8.38 ppm (for nucleated, caramel and white types, respectively). Disseminated fluorite displays higher ΣREE values (1708 and 1526ppm) than fluorite in late veins(34.81ppm). Yttrium concentration is higher in disseminated fluorite and in magmatic cryolite. The evolution of several parameters (REEtotal, LREE/HREE, Y) was followed throughout successive stages of evolution in albite granites and associated mineralization. At the end of the process, late cryolite was formed with low REEtotal content. REE data indicate that the MCD was formed by, and the disseminated ore enriched by (additional formation of hydrothermal disseminated cryolite), hydrothermal fluids, residual from albite granite. The presence of tetrads is poorly defined, although nucleated, caramel and white cryolite types show evidence for tetrad effect.
Resumo:
Computational methods for the calculation of dynamical properties of fluids might consider the system as a continuum or as an assembly of molecules. Molecular dynamics (MD) simulation includes molecular resolution, whereas computational fluid dynamics (CFD) considers the fluid as a continuum. This work provides a review of hybrid methods MD/CFD recently proposed in the literature. Theoretical foundations, basic approaches of computational methods, and dynamical properties typically calculated by MD and CFD are first presented in order to appreciate the similarities and differences between these two methods. Then, methods for coupling MD and CFD, and applications of hybrid simulations MD/CFD, are presented.
Resumo:
The exact time-dependent solution for the stochastic equations governing the behavior of a binary self-regulating gene is presented. Using the generating function technique to rephrase the master equations in terms of partial differential equations, we show that the model is totally integrable and the analytical solutions are the celebrated confluent Heun functions. Self-regulation plays a major role in the control of gene expression, and it is remarkable that such a microscopic model is completely integrable in terms of well-known complex functions.
Resumo:
A system of nearest neighbors Kuramoto-like coupled oscillators placed in a ring is studied above the critical synchronization transition. We find a richness of solutions when the coupling increases, which exists only within a solvability region (SR). We also find that the solutions possess different characteristics, depending on the section of the boundary of the SR where they appear. We study the birth of these solutions and how they evolve when the coupling strength increases, and determine the diagram of solutions in phase space.
Resumo:
A generalized version of the nonequilibrium linear Glauber model with q states in d dimensions is introduced and analyzed. The model is fully symmetric, its dynamics being invariant under all permutations of the q states. Exact expressions for the two-time autocorrelation and response functions on a d-dimensional lattice are obtained. In the stationary regime, the fluctuation-dissipation theorem holds, while in the transient the aging is observed with the fluctuation-dissipation ratio leading to the value predicted for the linear Glauber model.
Resumo:
Understanding the emergence of extreme opinions and in what kind of environment they might become less extreme is a central theme in our modern globalized society. A model combining continuous opinions and observed discrete actions (CODA) capable of addressing the important issue of measuring how extreme opinions might be has been recently proposed. In this paper I show extreme opinions to arise in a ubiquitous manner in the CODA model for a multitude of social network structures. Depending on network details reducing extremism seems to be possible. However, a large number of agents with extreme opinions is always observed. A significant decrease in the number of extremists can be observed by allowing agents to change their positions in the network.
Resumo:
Plasma edge turbulence in Tokamak Chauffage Alfven Bresilien (TCABR) [R. M. O. Galvao et al., Plasma Phys. Contr. Fusion 43, 1181 (2001)] is investigated for multifractal properties of the fluctuating floating electrostatic potential measured by Langmuir probes. The multifractality in this signal is characterized by the full multifractal spectra determined by applying the wavelet transform modulus maxima. In this work, the dependence of the multifractal spectrum with the radial position is presented. The multifractality degree inside the plasma increases with the radial position reaching a maximum near the plasma edge and becoming almost constant in the scrape-off layer. Comparisons between these results with those obtained for random test time series with the same Hurst exponents and data length statistically confirm the reported multifractal behavior. Moreover, the persistence of these signals, characterized by their Hurst exponent, present radial profile similar to the deterministic component estimated from analysis based on dynamical recurrences. (C) 2008 American Institute of Physics.
Resumo:
The possible states in the flow around two identical circular cylinders in tandem arrangements are investigated for configurations in the vicinity of the drag inversion separation. By means of numerical simulations, the hysteresis in the transition between the shedding regimes is studied and the relationship between (three-dimensional) secondary instabilities and shedding regime determination is addressed. The differences observed in the behavior of two- and three-dimensional flows are analyzed, and the regions of bistable flow are delimited. Very good agreement is found between the proposed scenario and results available in the literature. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3420111]
Resumo:
In this work, we investigate the interplay between surface anchoring and finite-size effects on the smectic-isotropic transition in free-standing smectic films. Using an extended McMillan model, we study how a homeotropic anchoring stabilizes the smectic order above the bulk transition temperature. In particular, we determine how the transition temperature depends on the surface ordering and film thickness. We identify a characteristic anchoring for which the transition temperature does not depend on the film thickness. For strong surface ordering, we found that the thickness dependence of the transition temperature can be well represented by a power-law relation. The power-law exponent exhibits a weak dependence on the range of film thicknesses, as well as on the molecular alkyl tail length. Our results reproduce the main experimental findings concerning the layer-thinning transitions in free-standing smectic films.
Resumo:
We report numerically and analytically estimated values for the Hurst exponent for a recently proposed non-Markovian walk characterized by amnestically induced persistence. These results are consistent with earlier studies showing that log-periodic oscillations arise only for large memory losses of the recent past. We also report numerical estimates of the Hurst exponent for non-Markovian walks with diluted memory. Finally, we study walks with a fractal memory of the past for a Thue-Morse and Fibonacci memory patterns. These results are interpreted and discussed in the context of the necessary and sufficient conditions for the central limit theorem to hold.
Resumo:
We investigate a recently proposed non-Markovian random walk model characterized by loss of memories of the recent past and amnestically induced persistence. We report numerical and analytical results showing the complete phase diagram, consisting of four phases, for this system: (i) classical nonpersistence, (ii) classical persistence, (iii) log-periodic nonpersistence, and (iv) log-periodic persistence driven by negative feedback. The first two phases possess continuous scale invariance symmetry, however, log-periodicity breaks this symmetry. Instead, log-periodic motion satisfies discrete scale invariance symmetry, with complex rather than real fractal dimensions. We find for log-periodic persistence evidence not only of statistical but also of geometric self-similarity.