974 resultados para Detection specificity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information fusion in biometrics has received considerable attention. The architecture proposed here is based on the sequential integration of multi-instance and multi-sample fusion schemes. This method is analytically shown to improve the performance and allow a controlled trade-off between false alarms and false rejects when the classifier decisions are statistically independent. Equations developed for detection error rates are experimentally evaluated by considering the proposed architecture for text dependent speaker verification using HMM based digit dependent speaker models. The tuning of parameters, n classifiers and m attempts/samples, is investigated and the resultant detection error trade-off performance is evaluated on individual digits. Results show that performance improvement can be achieved even for weaker classifiers (FRR-19.6%, FAR-16.7%). The architectures investigated apply to speaker verification from spoken digit strings such as credit card numbers in telephone or VOIP or internet based applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite all attempts to prevent fraud, it continues to be a major threat to industry and government. Traditionally, organizations have focused on fraud prevention rather than detection, to combat fraud. In this paper we present a role mining inspired approach to represent user behaviour in Enterprise Resource Planning (ERP) systems, primarily aimed at detecting opportunities to commit fraud or potentially suspicious activities. We have adapted an approach which uses set theory to create transaction profiles based on analysis of user activity records. Based on these transaction profiles, we propose a set of (1) anomaly types to detect potentially suspicious user behaviour, and (2) scenarios to identify inadequate segregation of duties in an ERP environment. In addition, we present two algorithms to construct a directed acyclic graph to represent relationships between transaction profiles. Experiments were conducted using a real dataset obtained from a teaching environment and a demonstration dataset, both using SAP R/3, presently the predominant ERP system. The results of this empirical research demonstrate the effectiveness of the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ERP systems generally implement controls to prevent certain common kinds of fraud. In addition however, there is an imperative need for detection of more sophisticated patterns of fraudulent activity as evidenced by the legal requirement for company audits and the common incidence of fraud. This paper describes the design and implementation of a framework for detecting patterns of fraudulent activity in ERP systems. We include the description of six fraud scenarios and the process of specifying and detecting the occurrence of those scenarios in ERP user log data using the prototype software which we have developed. The test results for detecting these scenarios in log data have been verified and confirm the success of our approach which can be generalized to ERP systems in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of the sensors involved (as opposed to radar). This paper describes the development and evaluation of a vision-based collision detection algorithm suitable for fixed-wing aerial robotics. The system was evaluated using highly realistic vision data of the moments leading up to a collision. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We make use of the enormous potential of graphic processing units to achieve processing rates of 30Hz (for images of size 1024-by- 768). Currently, integration in the final platform is under way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of vision sensors (as opposed to radar and TCAS). This paper describes the development and evaluation of a real-time vision-based collision detection system suitable for fixed-wing aerial robotics. Using two fixed-wing UAVs to recreate various collision-course scenarios, we were able to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. This type of image data is extremely scarce and was invaluable in evaluating the detection performance of two candidate target detection approaches. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We overcame the challenge of achieving real-time computational speeds by exploiting the parallel processing architectures of graphics processing units found on commercially-off-the-shelf graphics devices. Our chosen GPU device suitable for integration onto UAV platforms can be expected to handle real-time processing of 1024 by 768 pixel image frames at a rate of approximately 30Hz. Flight trials using manned Cessna aircraft where all processing is performed onboard will be conducted in the near future, followed by further experiments with fully autonomous UAV platforms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robust texture recognition in underwater image sequences for marine pest population control such as Crown-Of-Thorns Starfish (COTS) is a relatively unexplored area of research. Typically, humans count COTS by laboriously processing individual images taken during surveys. Being able to autonomously collect and process images of reef habitat and segment out the various marine biota holds the promise of allowing researchers to gain a greater understanding of the marine ecosystem and evaluate the impact of different environmental variables. This research applies and extends the use of Local Binary Patterns (LBP) as a method for texture-based identification of COTS from survey images. The performance and accuracy of the algorithms are evaluated on a image data set taken on the Great Barrier Reef.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motion has been examined in biology to be a critical component for obstacle avoidance and navigation. In particular, optical flow is a powerful motion cue that has been exploited in many biological systems for survival. In this paper, we investigate an obstacle detection system that uses optical flow to obtain range information to objects. Our experimental results demonstrate that optical flow is capable of providing good obstacle information but has obvious failure modes. We acknowledge that our optical flow system has certain disadvantages and cannot be solely used for navigation. Instead, we believe that optical flow is a critical visual subsystem used when moving at reason- able speeds. When combined with other visual subsystems, considerable synergy can result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acoustically, car cabins are extremely noisy and as a consequence audio-only, in-car voice recognition systems perform poorly. As the visual modality is immune to acoustic noise, using the visual lip information from the driver is seen as a viable strategy in circumventing this problem by using audio visual automatic speech recognition (AVASR). However, implementing AVASR requires a system being able to accurately locate and track the drivers face and lip area in real-time. In this paper we present such an approach using the Viola-Jones algorithm. Using the AVICAR [1] in-car database, we show that the Viola- Jones approach is a suitable method of locating and tracking the driver’s lips despite the visual variability of illumination and head pose for audio-visual speech recognition system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approaches with Vertical Guidance (APV) can provide greater safety and cost savings to general aviation through accurate GPS horizontal and vertical navigation. However, GPS needs augmentation to achieve APV fault detection requirements. Aircraft Based Augmentation Systems (ABAS) fuse GPS with additional sensors at the aircraft. Typical ABAS designs assume high-quality inertial sensors with Kalman filters but these are too expensive for general aviation. Instead of using high-quality (and expensive) sensors, the purpose of this paper is to investigate augmenting GPS with a low-quality MEMS IMU and Aircraft Dynamic Model (ADM). The IMU and ADM are fused together using a multiple model fusion strategy in a bank of Extended Kalman Filters (EKF) with the Normalized Solution Separation (NSS) fault detection scheme. A tightly-coupled configuration with GPS is used and frequent GPS updates are applied to the IMU and ADM to compensate for their errors. Based upon a simulated APV approach, the performance of this architecture in detecting a GPS ramp fault is investigated showing a performance improvement over a GPS-only “snapshot” implementation of the NSS method. The effect of fusing the IMU with the ADM is evaluated by comparing a GPS-IMU-ADM EKF with a GPS-IMU EKF where a small improvement in protection levels is shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secret-sharing schemes describe methods to securely share a secret among a group of participants. A properly constructed secret-sharing scheme guarantees that the share belonging to one participant does not reveal anything about the shares of others or even the secret itself. Besides the obvious feature which is to distribute a secret, secret-sharing schemes have also been used in secure multi-party computations and redundant residue number systems for error correction codes. In this paper, we propose that the secret-sharing scheme be used as a primitive in a Network-based Intrusion Detection System (NIDS) to detect attacks in encrypted networks. Encrypted networks such as Virtual Private Networks (VPNs) fully encrypt network traffic which can include both malicious and non-malicious traffic. Traditional NIDS cannot monitor encrypted traffic. Our work uses a combination of Shamir's secret-sharing scheme and randomised network proxies to enable a traditional NIDS to function normally in a VPN environment. In this paper, we introduce a novel protocol that utilises a secret-sharing scheme to detect attacks in encrypted networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-driving related cognitive load and variations of emotional state may impact a driver’s capability to control a vehicle and introduces driving errors. Availability of reliable cognitive load and emotion detection in drivers would benefit the design of active safety systems and other intelligent in-vehicle interfaces. In this study, speech produced by 68 subjects while driving in urban areas is analyzed. A particular focus is on speech production differences in two secondary cognitive tasks, interactions with a co-driver and calls to automated spoken dialog systems (SDS), and two emotional states during the SDS interactions - neutral/negative. A number of speech parameters are found to vary across the cognitive/emotion classes. Suitability of selected cepstral- and production-based features for automatic cognitive task/emotion classification is investigated. A fusion of GMM/SVM classifiers yields an accuracy of 94.3% in cognitive task and 81.3% in emotion classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gabor representations have been widely used in facial analysis (face recognition, face detection and facial expression detection) due to their biological relevance and computational properties. Two popular Gabor representations used in literature are: 1) Log-Gabor and 2) Gabor energy filters. Even though these representations are somewhat similar, they also have distinct differences as the Log-Gabor filters mimic the simple cells in the visual cortex while the Gabor energy filters emulate the complex cells, which causes subtle differences in the responses. In this paper, we analyze the difference between these two Gabor representations and quantify these differences on the task of facial action unit (AU) detection. In our experiments conducted on the Cohn-Kanade dataset, we report an average area underneath the ROC curve (A`) of 92.60% across 17 AUs for the Gabor energy filters, while the Log-Gabor representation achieved an average A` of 96.11%. This result suggests that small spatial differences that the Log-Gabor filters pick up on are more useful for AU detection than the differences in contours and edges that the Gabor energy filters extract.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The detection of voice activity is a challenging problem, especially when the level of acoustic noise is high. Most current approaches only utilise the audio signal, making them susceptible to acoustic noise. An obvious approach to overcome this is to use the visual modality. The current state-of-the-art visual feature extraction technique is one that uses a cascade of visual features (i.e. 2D-DCT, feature mean normalisation, interstep LDA). In this paper, we investigate the effectiveness of this technique for the task of visual voice activity detection (VAD), and analyse each stage of the cascade and quantify the relative improvement in performance gained by each successive stage. The experiments were conducted on the CUAVE database and our results highlight that the dynamics of the visual modality can be used to good effect to improve visual voice activity detection performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The previous investigations have shown that the modal strain energy correlation method, MSEC, could successfully identify the damage of truss bridge structures. However, it has to incorporate the sensitivity matrix to estimate damage and is not reliable in certain damage detection cases. This paper presents an improved MSEC method where the prediction of modal strain energy change vector is differently obtained by running the eigensolutions on-line in optimisation iterations. The particular trail damage treatment group maximising the fitness function close to unity is identified as the detected damage location. This improvement is then compared with the original MSEC method along with other typical correlation-based methods on the finite element model of a simple truss bridge. The contributions to damage detection accuracy of each considered mode is also weighed and discussed. The iterative searching process is operated by using genetic algorithm. The results demonstrate that the improved MSEC method suffices the demand in detecting the damage of truss bridge structures, even when noised measurement is considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ad hoc networks are vulnerable to attacks due to distributed nature and lack of infrastructure. Intrusion detection systems (IDS) provide audit and monitoring capabilities that offer the local security to a node and help to perceive the specific trust level of other nodes. The clustering protocols can be taken as an additional advantage in these processing constrained networks to collaboratively detect intrusions with less power usage and minimal overhead. Existing clustering protocols are not suitable for intrusion detection purposes, because they are linked with the routes. The route establishment and route renewal affects the clusters and as a consequence, the processing and traffic overhead increases due to instability of clusters. The ad hoc networks are battery and power constraint, and therefore a trusted monitoring node should be available to detect and respond against intrusions in time. This can be achieved only if the clusters are stable for a long period of time. If the clusters are regularly changed due to routes, the intrusion detection will not prove to be effective. Therefore, a generalized clustering algorithm has been proposed that can run on top of any routing protocol and can monitor the intrusions constantly irrespective of the routes. The proposed simplified clustering scheme has been used to detect intrusions, resulting in high detection rates and low processing and memory overhead irrespective of the routes, connections, traffic types and mobility of nodes in the network. Clustering is also useful to detect intrusions collaboratively since an individual node can neither detect the malicious node alone nor it can take action against that node on its own.