811 resultados para Data-driven analysis


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study presents some quantitative evidence from a number of simulation experiments on the accuracy of the productivitygrowth estimates derived from growthaccounting (GA) and frontier-based methods (namely data envelopment analysis-, corrected ordinary least squares-, and stochastic frontier analysis-based malmquist indices) under various conditions. These include the presence of technical inefficiency, measurement error, misspecification of the production function (for the GA and parametric approaches) and increased input and price volatility from one period to the next. The study finds that the frontier-based methods usually outperform GA, but the overall performance varies by experiment. Parametric approaches generally perform best when there is no functional form misspecification, but their accuracy greatly diminishes otherwise. The results also show that the deterministic approaches perform adequately even under conditions of (modest) measurement error and when measurement error becomes larger, the accuracy of all approaches (including stochastic approaches) deteriorates rapidly, to the point that their estimates could be considered unreliable for policy purposes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As student numbers in higher education in the UK have expanded during recent years, it has become increasingly important to understand its cost structure. This study applies Data Envelopment Analysis (DEA) to higher education institutions in England to assess their cost structure, efficiency and productivity. The paper complements an earlier study that used parametric methods to analyse the same panel data. Interestingly, DEA provides estimates of subject-specific unit costs that are in the same ballpark as those provided by the parametric methods. The paper then extends the previous analysis and finds that further student number increases of the order of 20–27% are feasible through exploiting operating and scale efficiency gains and also adjusting student mix. Finally the paper uses a Malmquist index approach to assess productivity change in the UK higher education. The results reveal that for a majority of institutions productivity has actually decreased during the study period.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this paper is to illustrate the measurement of productive efficiency using Nerlovian indicator and metafrontier with data envelopment analysis techniques. Further, we illustrate how profit efficiency of firms operating in different regions can be aggregated into one overarching frontier. Sugarcane production in three regions in Kenya has been used to illustrate these concepts. Results show that the sources of inefficiency in all regions are both technical and allocative, but allocative efficiency contributes more to the overall Nerlovian (in)efficiency indicator. © 2011 Springer-Verlag.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper suggests a data envelopment analysis (DEA) model for selecting the most efficient alternative in advanced manufacturing technology in the presence of both cardinal and ordinal data. The paper explains the problem of using an iterative method for finding the most efficient alternative and proposes a new DEA model without the need of solving a series of LPs. A numerical example illustrates the model, and an application in technology selection with multi-inputs/multi-outputs shows the usefulness of the proposed approach. © 2012 Springer-Verlag London Limited.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The increasing intensity of global competition has led organizations to utilize various types of performance measurement tools for improving the quality of their products and services. Data envelopment analysis (DEA) is a methodology for evaluating and measuring the relative efficiencies of a set of decision making units (DMUs) that use multiple inputs to produce multiple outputs. All the data in the conventional DEA with input and/or output ratios assumes the form of crisp numbers. However, the observed values of data in real-world problems are sometimes expressed as interval ratios. In this paper, we propose two new models: general and multiplicative non-parametric ratio models for DEA problems with interval data. The contributions of this paper are fourfold: (1) we consider input and output data expressed as interval ratios in DEA; (2) we address the gap in DEA literature for problems not suitable or difficult to model with crisp values; (3) we propose two new DEA models for evaluating the relative efficiencies of DMUs with interval ratios, and (4) we present a case study involving 20 banks with three interval ratios to demonstrate the applicability and efficacy of the proposed models where the traditional indicators are mostly financial ratios. © 2011 Elsevier Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although crisp data are fundamentally indispensable for determining the profit Malmquist productivity index (MPI), the observed values in real-world problems are often imprecise or vague. These imprecise or vague data can be suitably characterized with fuzzy and interval methods. In this paper, we reformulate the conventional profit MPI problem as an imprecise data envelopment analysis (DEA) problem, and propose two novel methods for measuring the overall profit MPI when the inputs, outputs, and price vectors are fuzzy or vary in intervals. We develop a fuzzy version of the conventional MPI model by using a ranking method, and solve the model with a commercial off-the-shelf DEA software package. In addition, we define an interval for the overall profit MPI of each decision-making unit (DMU) and divide the DMUs into six groups according to the intervals obtained for their overall profit efficiency and MPIs. We also present two numerical examples to demonstrate the applicability of the two proposed models and exhibit the efficacy of the procedures and algorithms. © 2011 Elsevier Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Emrouznejad et al. (2010) proposed a Semi-Oriented Radial Measure (SORM) model for assessing the efficiency of Decision Making Units (DMUs) by Data Envelopment Analysis (DEA) with negative data. This paper provides a necessary and sufficient condition for boundedness of the input and output oriented SORM models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although considerable effort has been invested in the measurement of banking efficiency using Data Envelopment Analysis, hardly any empirical research has focused on comparison of banks in Gulf States Countries This paper employs data on Gulf States banking sector for the period 2000-2002 to develop efficiency scores and rankings for both Islamic and conventional banks. We then investigate the productivity change using Malmquist Index and decompose the productivity into technical change and efficiency change. Further, hypothesis testing and statistical precision in the context of nonparametric efficiency and productivity measurement have been used. Specially, cross-country analysis of efficiency and comparisons of efficiencies between Islamic banks and conventional banks have been investigated using Mann-Whitney test.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Zambia and many other countries in Sub-Saharan Africa face a key challenge of sustaining high levels of coverage of AIDS treatment under prospects of dwindling global resources for HIV/AIDS treatment. Policy debate in HIV/AIDS is increasingly paying more focus to efficiency in the use of available resources. In this chapter, we apply Data Envelopment Analysis (DEA) to estimate short term technical efficiency of 34 HIV/AIDS treatment facilities in Zambia. The data consists of input variables such as human resources, medical equipment, building space, drugs, medical supplies, and other materials used in providing HIV/AIDS treatment. Two main outputs namely, numbers of ART-years (Anti-Retroviral Therapy-years) and pre-ART-years are included in the model. Results show the mean technical efficiency score to be 83%, with great variability in efficiency scores across the facilities. Scale inefficiency is also shown to be significant. About half of the facilities were on the efficiency frontier. We also construct bootstrap confidence intervals around the efficiency scores.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we attempt to assess the impact of journals in the field of forestry, in terms of bibliometric data, by providing an evaluation of forestry journals based on data envelopment analysis (DEA). In addition, based on the results of the conducted analysis, we provide suggestions for improving the impact of the journals in terms of widely accepted measures of journal citation impact, such as the journal impact factor (IF) and the journal h-index. More specifically, by modifying certain inputs associated with the productivity of forestry journals, we have illustrated how this method could be utilized to raise their efficiency, which in terms of research impact can then be translated into an increase of their bibliometric indices, such as the h-index, IF or eigenfactor score. © 2013 Elsevier Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Over the last few years Data Envelopment Analysis (DEA) has been gaining increasing popularity as a tool for measuring efficiency and productivity of Decision Making Units (DMUs). Conventional DEA models assume non-negative inputs and outputs. However, in many real applications, some inputs and/or outputs can take negative values. Recently, Emrouznejad et al. [6] introduced a Semi-Oriented Radial Measure (SORM) for modelling DEA with negative data. This paper points out some issues in target setting with SORM models and introduces a modified SORM approach. An empirical study in bank sector demonstrates the applicability of the proposed model. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Different types of ontologies and knowledge or metaknowledge connected to them are considered and analyzed aiming at realization in contemporary information security systems (ISS) and especially the case of intrusion detection systems (IDS) or intrusion prevention systems (IPS). Human-centered methods INCONSISTENCY, FUNNEL, CALEIDOSCOPE and CROSSWORD are algorithmic or data-driven methods based on ontologies. All of them interact on a competitive principle ‘survival of the fittest’. They are controlled by a Synthetic MetaMethod SMM. It is shown that the data analysis frequently needs an act of creation especially if it is applied to knowledge-poor environments. It is shown that human-centered methods are very suitable for resolutions in case, and often they are based on the usage of dynamic ontologies

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Data envelopment analysis (DEA) is the most widely used methods for measuring the efficiency and productivity of decision-making units (DMUs). The need for huge computer resources in terms of memory and CPU time in DEA is inevitable for a large-scale data set, especially with negative measures. In recent years, wide ranges of studies have been conducted in the area of artificial neural network and DEA combined methods. In this study, a supervised feed-forward neural network is proposed to evaluate the efficiency and productivity of large-scale data sets with negative values in contrast to the corresponding DEA method. Results indicate that the proposed network has some computational advantages over the corresponding DEA models; therefore, it can be considered as a useful tool for measuring the efficiency of DMUs with (large-scale) negative data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to assess high-dimensional visualisation, combined with pattern matching, as an approach to observing dynamic changes in the ways people tweet about science topics. Design/methodology/approach - The high-dimensional visualisation approach was applied to three scientific topics to test its effectiveness for longitudinal analysis of message framing on Twitter over two disjoint periods in time. The paper uses coding frames to drive categorisation and visual analytics of tweets discussing the science topics. Findings - The findings point to the potential of this mixed methods approach, as it allows sufficiently high sensitivity to recognise and support the analysis of non-trending as well as trending topics on Twitter. Research limitations/implications - Three topics are studied and these illustrate a range of frames, but results may not be representative of all scientific topics. Social implications - Funding bodies increasingly encourage scientists to participate in public engagement. As social media provides an avenue actively utilised for public communication, understanding the nature of the dialog on this medium is important for the scientific community and the public at large. Originality/value - This study differs from standard approaches to the analysis of microblog data, which tend to focus on machine driven analysis large-scale datasets. It provides evidence that this approach enables practical and effective analysis of the content of midsize to large collections of microposts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The performance of a supply chain depends critically on the coordinating actions and decisions undertaken by the trading partners. The sharing of product and process information plays a central role in the coordination and is a key driver for the success of the supply chain. In this paper we propose the concept of "Linked pedigrees" - linked datasets, that enable the sharing of traceability information of products as they move along the supply chain. We present a distributed and decentralised, linked data driven architecture that consumes real time supply chain linked data to generate linked pedigrees. We then present a communication protocol to enable the exchange of linked pedigrees among trading partners. We exemplify the utility of linked pedigrees by illustrating examples from the perishable goods logistics supply chain.