915 resultados para Data reporting
Resumo:
This instrument was used in the project named Teachers Reporting Child Sexual Abuse: Towards Evidence-based Reform of Law, Policy and Practice (ARC DP0664847)
Resumo:
This instrument was used in the project named Teachers Reporting Child Sexual Abuse: Towards Evidence-based Reform of Law, Policy and Practice (ARC DP0664847)
Resumo:
Over 3000 cases of child sexual abuse are identified every year in Australia, but the real incidence is higher still. As a strategy to identify child sexual abuse, Australian States and Territories have enacted legislation requiring members of selected professions, including teachers, to report suspected cases. In addition, policy-based reporting obligations have been developed by professions, including the teaching profession. These legislative and industry-based developments have occurred in a context of growing awareness of the incidence and consequences of child sexual abuse. Teachers have frequent contact and close relationships with children, and possess expertise in monitoring changes in children’s behaviour. Accordingly, teachers are seen as being well-placed to detect and report suspected child sexual abuse. To date, however, there has been little empirical research into the operation of these reporting duties. The extent of teachers’ awareness of their duties to report child sexual abuse is unknown. Further, there is little evidence about teachers’ past reporting practice. Teachers’ duties to report sexual abuse, especially those in legislation, differ between States, and it is not known whether or how these differences affect reporting practice. This article presents results from the first large-scale Australian survey of teachers in three States with different reporting laws: New South Wales, Queensland, and Western Australia. The results indicate levels of teacher knowledge of reporting duties, reveal evidence about past reporting practice, and provide insights into anticipated future reporting practice and legal compliance. The findings have implications for reform of legislation and policy, training of teachers about the reporting of child sexual abuse, and enhancement of child protection.
Resumo:
The accuracy of data derived from linked-segment models depends on how well the system has been represented. Previous investigations describing the gait of persons with partial foot amputation did not account for the unique anthropometry of the residuum or the inclusion of a prosthesis and footwear in the model and, as such, are likely to have underestimated the magnitude of the peak joint moments and powers. This investigation determined the effect of inaccuracies in the anthropometric input data on the kinetics of gait. Toward this end, a geometric model was developed and validated to estimate body segment parameters of various intact and partial feet. These data were then incorporated into customized linked-segment models, and the kinetic data were compared with that obtained from conventional models. Results indicate that accurate modeling increased the magnitude of the peak hip and knee joint moments and powers during terminal swing. Conventional inverse dynamic models are sufficiently accurate for research questions relating to stance phase. More accurate models that account for the anthropometry of the residuum, prosthesis, and footwear better reflect the work of the hip extensors and knee flexors to decelerate the limb during terminal swing phase.
Resumo:
By using the Rasch model, much detailed diagnostic information is available to developers of survey and assessment instruments and to the researchers who use them. We outline an approach to the analysis of data obtained from the administration of survey instruments that can enable researchers to recognise and diagnose difficulties with those instruments and then to suggest remedial actions that can improve the measurement properties of the scales included in questionnaires. We illustrate the approach using examples drawn from recent research and demonstrate how the approach can be used to generate figures that make the results of Rasch analyses accessible to non-specialists.
Resumo:
The paper analyses the expected value of OD volumes from probe with fixed error, error that is proportional to zone size and inversely proportional to zone size. To add realism to the analysis, real trip ODs in the Tokyo Metropolitan Region are synthesised. The results show that for small zone coding with average radius of 1.1km, and fixed measurement error of 100m, an accuracy of 70% can be expected. The equivalent accuracy for medium zone coding with average radius of 5km would translate into a fixed error of approximately 300m. As expected small zone coding is more sensitive than medium zone coding as the chances of the probe error envelope falling into adjacent zones are higher. For the same error radii, error proportional to zone size would deliver higher level of accuracy. As over half (54.8%) of the trip ends start or end at zone with equivalent radius of ≤ 1.2 km and only 13% of trips ends occurred at zones with equivalent radius ≥2.5km, measurement error that is proportional to zone size such as mobile phone would deliver higher level of accuracy. The synthesis of real OD with different probe error characteristics have shown that expected value of >85% is difficult to achieve for small zone coding with average radius of 1.1km. For most transport applications, OD matrix at medium zone coding is sufficient for transport management. From this study it can be drawn that GPS with error range between 2 and 5m, and at medium zone coding (average radius of 5km) would provide OD estimates greater than 90% of the expected value. However, for a typical mobile phone operating error range at medium zone coding the expected value would be lower than 85%. This paper assumes transmission of one origin and one destination positions from the probe. However, if multiple positions within the origin and destination zones are transmitted, map matching to transport network could be performed and it would greatly improve the accuracy of the probe data.
Resumo:
This paper presents a model to estimate travel time using cumulative plots. Three different cases considered are i) case-Det, for only detector data; ii) case-DetSig, for detector data and signal controller data and iii) case-DetSigSFR: for detector data, signal controller data and saturation flow rate. The performance of the model for different detection intervals is evaluated. It is observed that detection interval is not critical if signal timings are available. Comparable accuracy can be obtained from larger detection interval with signal timings or from shorter detection interval without signal timings. The performance for case-DetSig and for case-DetSigSFR is consistent with accuracy generally more than 95% whereas, case-Det is highly sensitive to the signal phases in the detection interval and its performance is uncertain if detection interval is integral multiple of signal cycles.
Resumo:
Light Detection and Ranging (LIDAR) has great potential to assist vegetation management in power line corridors by providing more accurate geometric information of the power line assets and vegetation along the corridors. However, the development of algorithms for the automatic processing of LIDAR point cloud data, in particular for feature extraction and classification of raw point cloud data, is in still in its infancy. In this paper, we take advantage of LIDAR intensity and try to classify ground and non-ground points by statistically analyzing the skewness and kurtosis of the intensity data. Moreover, the Hough transform is employed to detected power lines from the filtered object points. The experimental results show the effectiveness of our methods and indicate that better results were obtained by using LIDAR intensity data than elevation data.
Resumo:
A few studies examined interactive effects between air pollution and temperature on health outcomes. This study is to examine if temperature modified effects of ozone and cardiovascular mortality in 95 large US cities. A nonparametric and a parametric regression models were separately used to explore interactive effects of temperature and ozone on cardiovascular mortality during May and October, 1987-2000. A Bayesian meta-analysis was used to pool estimates. Both models illustrate that temperature enhanced the ozone effects on mortality in the northern region, but obviously in the southern region. A 10-ppb increment in ozone was associated with 0.41 % (95% posterior interval (PI): -0.19 %, 0.93 %), 0.27 % (95% PI: -0.44 %, 0.87 %) and 1.68 % (95% PI: 0.07 %, 3.26 %) increases in daily cardiovascular mortality corresponding to low, moderate and high levels of temperature, respectively. We concluded that temperature modified effects of ozone, particularly in the northern region.
Resumo:
Total deposition of petrol, diesel and environmental tobacco smoke (ETS) aerosols in the human respiratory tract for nasal breathing conditions was computed for 14 nonsmoking volunteers, considering the specific anatomical and respiratory parameters of each volunteer and the specific size distribution for each inhalation experiment. Theoretical predictions were 34.6% for petrol, 24.0% for diesel, and 18.5% for ETS particles. Compared to the experimental results, predicted deposition values were consistently smaller than the measured data (41.4% for petrol, 29.6% for diesel, and 36.2% for ETS particles). The apparent discrepancy between experimental data on total deposition and modeling results may be reconciled by considering the non-spherical shape of the test aerosols by diameter-dependent dynamic shape factors to account for differences between mobility-equivalent and volume-equivalent or thermodynamic diameters. While the application of dynamic shape factors is able to explain the observed differences for petrol and diesel particles, additional mechanisms may be required for ETS particle deposition, such as the size reduction upon inspiration by evaporation of volatile compounds and/or condensation-induced restructuring, and, possibly, electrical charge effects.
Resumo:
Traffic congestion is an increasing problem with high costs in financial, social and personal terms. These costs include psychological and physiological stress, aggressivity and fatigue caused by lengthy delays, and increased likelihood of road crashes. Reliable and accurate traffic information is essential for the development of traffic control and management strategies. Traffic information is mostly gathered from in-road vehicle detectors such as induction loops. Traffic Message Chanel (TMC) service is popular service which wirelessly send traffic information to drivers. Traffic probes have been used in many cities to increase traffic information accuracy. A simulation to estimate the number of probe vehicles required to increase the accuracy of traffic information in Brisbane is proposed. A meso level traffic simulator has been developed to facilitate the identification of the optimal number of probe vehicles required to achieve an acceptable level of traffic reporting accuracy. Our approach to determine the optimal number of probe vehicles required to meet quality of service requirements, is to simulate runs with varying numbers of traffic probes. The simulated traffic represents Brisbane’s typical morning traffic. The road maps used in simulation are Brisbane’s TMC maps complete with speed limits and traffic lights. Experimental results show that that the optimal number of probe vehicles required for providing a useful supplement to TMC (induction loop) data lies between 0.5% and 2.5% of vehicles on the road. With less probes than 0.25%, little additional information is provided, while for more probes than 5%, there is only a negligible affect on accuracy for increasingly many probes on the road. Our findings are consistent with on-going research work on traffic probes, and show the effectiveness of using probe vehicles to supplement induction loops for accurate and timely traffic information.
Resumo:
Traffic law enforcement is based on deterrence principles, whereby drivers control their behaviour in order to avoid an undesirable sanction. For “hooning”-related driving behaviours in Queensland, the driver’s vehicle can be impounded for 48 hours, 3 months, or permanently depending on the number of previous hooning offences. It is assumed that the threat of losing something of value, their vehicle, will discourage drivers from hooning. While official data shows that the rate of repeat offending is low, an in-depth understanding of the deterrent effects of these laws should involve qualitative research with targeted drivers. A sample of 22 drivers who reported engaging in hooning behaviours participated in focus group discussions about the vehicle impoundment laws as applied to hooning offences in Queensland. The findings suggested that deterrence theory alone cannot fully explain hooning behaviour, as participants reported hooning frequently, and intended to continue doing so, despite reporting that it is likely that they will be caught, and perceiving the vehicle impoundment laws to be extremely severe. The punishment avoidance aspect of deterrence theory appears important, as well as factors over and above legal issues, particularly social influences. A concerning finding was drivers’ willingness to flee from police in order to avoid losing their vehicle permanently for a third offence, despite acknowledging risks to their own safety and that of others. This paper discusses the study findings in terms of the implications for future research directions, enforcement practices and policy development for hooning and other traffic offences for which vehicle impoundment is applied.
Resumo:
The wide range of contributing factors and circumstances surrounding crashes on road curves suggest that no single intervention can prevent these crashes. This paper presents a novel methodology, based on data mining techniques, to identify contributing factors and the relationship between them. It identifies contributing factors that influence the risk of a crash. Incident records, described using free text, from a large insurance company were analysed with rough set theory. Rough set theory was used to discover dependencies among data, and reasons using the vague, uncertain and imprecise information that characterised the insurance dataset. The results show that male drivers, who are between 50 and 59 years old, driving during evening peak hours are involved with a collision, had a lowest crash risk. Drivers between 25 and 29 years old, driving from around midnight to 6 am and in a new car has the highest risk. The analysis of the most significant contributing factors on curves suggests that drivers with driving experience of 25 to 42 years, who are driving a new vehicle have the highest crash cost risk, characterised by the vehicle running off the road and hitting a tree. This research complements existing statistically based tools approach to analyse road crashes. Our data mining approach is supported with proven theory and will allow road safety practitioners to effectively understand the dependencies between contributing factors and the crash type with the view to designing tailored countermeasures.
Resumo:
Objective: The objectives of this article are to explore the extent to which the International Statistical Classification of Diseases and Related Health Problems (ICD) has been used in child abuse research, to describe how the ICD system has been applied and to assess factors affecting the reliability of ICD coded data in child abuse research.----- Methods: PubMed, CINAHL, PsychInfo and Google Scholar were searched for peer reviewed articles written since 1989 that used ICD as the classification system to identify cases and research child abuse using health databases. Snowballing strategies were also employed by searching the bibliographies of retrieved references to identify relevant associated articles. The papers identified through the search were independently screened by two authors for inclusion, resulting in 47 studies selected for the review. Due to heterogeneity of studies metaanalysis was not performed.----- Results: This paper highlights both utility and limitations of ICD coded data. ICD codes have been widely used to conduct research into child maltreatment in health data systems. The codes appear to be used primarily to determine child maltreatment patterns within identified diagnoses or to identify child maltreatment cases for research.----- Conclusions: A significant impediment to the use of ICD codes in child maltreatment research is the under-ascertainment of child maltreatment by using coded data alone. This is most clearly identified and, to some degree, quantified, in research where data linkage is used. Practice Implications: The importance of improved child maltreatment identification will assist in identifying risk factors and creating programs that can prevent and treat child maltreatment and assist in meeting reporting obligations under the CRC.