997 resultados para DNA fingerprinting
Resumo:
O objetivo deste estudo foi padronizar uma metodologia de extração de DNA de alta qualidade a partir de amostras de sangue coagulado. Quarenta e oito amostras de sangue humano coagulado foram utilizadas para a extração de DNA pelo kit comercial EZ-DNA® (Biological Industries, Beit Haemek, Israel), pelo kit de coluna Neoscience® (One Lambda Inc., San Diego, CA) e pelo método modificado de salting out. Apenas o método de salting out foi capaz de extrair altas concentrações de DNA (média, 180ng/µL), as quais foram medidas pelo detector de fluorescência Qubit® (Invitrogen, USA). Este método permitiu a amplificação dos genes HLA (human leukocyte antigens) pela tecnologia PCR-SSO (polymerase chain reaction - specific sequence of oligonucleotides) Luminex, a qual exige DNA de boa qualidade, e de genes KIR (killer cell immunoglobulin-like receptors) pela técnica made in house PCR-SSP (polymerase chain reaction-sequence specific of primers), a qual demanda uma concentração específica de DNA (10ng/µL). Concluímos que a técnica de salting out modificada foi muito eficiente, simples e rápida para a extração de DNA de amostras de sangue humano coagulado, com o objetivo de realizar a genotipagem de genes HLA e KIR.
Resumo:
INTRODUCTION: This study aimed to confirm the identification of Enterococcus gallinarum and Enterococcus casseliflavus isolated from clinical and food samples by PCR-RFLP. METHODS: Fifty-two strains identified by conventional biochemical exams were submitted to PCR amplification and digested with HinfI. Only 20 (38.5%) of the 52 strains showed a DNA pattern expected for E. gallinarum and E. casseliflavus. RESULTS: Analysis of the results of this study showed that E. gallinarum and E. casseliflavus are occasionally erroneously identified and confirmed the potential application of 16S rDNA analysis for accurate identification of these species. CONCLUSIONS: A correct identification is important to distinguish between intrinsic and acquired vancomycin resistance.
Resumo:
INTRODUCTION: Human herpesviruses are frequently associated with orofacial diseases in humans (HSV-1, EBV, CMV and HHV-8), some can also cause systemic disease (CMV and HHV-8). The transmission of these viruses occurs by contact with infected secretions, especially saliva. Human immunodeficiency virus infection is associated with an increased risk of HHVs and related diseases. METHODS: This work aimed to detect HSV-1, EBV, CMV and HHV-8 DNA in saliva of HIV-infected patients from Teresina, northeast Brazil, by PCR and compare these findings with age and sex matched HIV-seronegative individuals. RESULTS: No difference in prevalence was verified between HHV detection in the saliva of HIV-seropositive individuals and controls. The individual frequencies of these viruses in these two populations were different. HIV seropositivity correlated positively with the presence of CMV (OR: 18.2, p= 0.00032) and EBV (OR: 3.44, p= 0.0081). No association between CD4 counts and the prevalence of HHVs in the saliva was observed; however, a strong association was determined between seropositivity and the presence of multiple HHV DNAs in saliva (OR: 4.83, p = 0.0028). CONCLUSIONS: These findings suggest the asymptomatic salivary shedding of HHVs is a common event between HIV-seropositive and seronegative individuals from Teresina, Piauí, Brazil, and, especially for HIV-seropositive patients, saliva is a risk factor for the acquisition/transmission of multiple HHVs.
Resumo:
INTRODUCTION: The study analyzed positivity of polymerase chain reaction (PCR) on detection of DNA from Leishmania in patients' samples. METHODS: Extracted DNA was submitted to L150/L152, 13Y/13Z, and seminested PCR (snPCR). RESULTS: Results were evidenced by bands of approximately 120, 720, and 670 bp for L150/L152, 13Y/13Z, and snPCR, respectively. L150/L152, 13Y/13Z, and snPCR positivity indexes were 76.9, 56.4, and 9.2 (p>0.05), respectively, for suspected and 93.7, 68.7, and 84.4 (p<0.05), respectively, for confirmed. CONCLUSIONS: Preliminary results showed that these assays, mainly L150/L152 and snPCR, can detect Leishmania DNA and carry potential on laboratory diagnosis of leishmaniasis.
Resumo:
Introduction Polymerase chain reaction (PCR) may offer an alternative diagnostic option when clinical signs and symptoms suggest visceral leishmaniasis (VL) but microscopic scanning and serological tests provide negative results. PCR using urine is sensitive enough to diagnose human visceral leishmaniasis (VL). However, DNA quality is a crucial factor for successful amplification. Methods A comparative performance evaluation of DNA extraction methods from the urine of patients with VL using two commercially available extraction kits and two phenol-chloroform protocols was conducted to determine which method produces the highest quality DNA suitable for PCR amplification, as well as the most sensitive, fast and inexpensive method. All commercially available kits were able to shorten the duration of DNA extraction. Results With regard to detection limits, both phenol: chloroform extraction and the QIAamp DNA Mini Kit provided good results (0.1 pg of DNA) for the extraction of DNA from a parasite smaller than Leishmania (Leishmania) infantum (< 100fg of DNA). However, among 11 urine samples from subjects with VL, better performance was achieved with the phenol:chloroform method (8/11) relative to the QIAamp DNA Mini Kit (4/11), with a greater number of positive samples detected at a lower cost using PCR. Conclusion Our results demonstrate that phenol:chloroform with an ethanol precipitation prior to extraction is the most efficient method in terms of yield and cost, using urine as a non-invasive source of DNA and providing an alternative diagnostic method at a low cost.
Resumo:
ABSTRACTINTRODUCTION:Cutaneous leishmaniasis (CL) is a serious and global public health issue, with the potential of developing a mucosal form, occurring as subclinical cases, and showing recurrence despite previous treatment.METHODS:Polymorphonuclear and mononuclear DNA obtained from 49 patients was subjected to polymerase chain reaction for detection of Leishmania (Viannia).RESULTS:DNA was detected in mononuclear cells from two patients with active primary lesions positive for CL, with infection periods of 3 and 6 months, respectively.CONCLUSIONS:The DNA of Leishmania (Viannia) indicates probable parasite dissemination possibly explaining subclinical case emergence, lesion recurrence, and mucosal lesion appearance.
Resumo:
Abstract: INTRODUCTION : Molecular analyses are auxiliary tools for detecting Koch's bacilli in clinical specimens from patients with suspected tuberculosis (TB). However, there are still no efficient diagnostic tests that combine high sensitivity and specificity and yield rapid results in the detection of TB. This study evaluated single-tube nested polymerase chain reaction (STNPCR) as a molecular diagnostic test with low risk of cross contamination for detecting Mycobacterium tuberculosis in clinical samples. METHODS: Mycobacterium tuberculosis deoxyribonucleic acid (DNA) was detected in blood and urine samples by STNPCR followed by agarose gel electrophoresis. In this system, reaction tubes were not opened between the two stages of PCR (simple and nested). RESULTS: STNPCR demonstrated good accuracy in clinical samples with no cross contamination between microtubes. Sensitivity in blood and urine, analyzed in parallel, was 35%-62% for pulmonary and 41%-72% for extrapulmonary TB. The specificity of STNPCR was 100% in most analyses, depending on the type of clinical sample (blood or urine) and clinical form of disease (pulmonary or extrapulmonary). CONCLUSIONS: STNPCR was effective in detecting TB, especially the extrapulmonary form for which sensitivity was higher, and had the advantage of less invasive sample collection from patients for whom a spontaneous sputum sample was unavailable. With low risk of cross contamination, the STNPCR can be used as an adjunct to conventional methods for diagnosing TB.
Resumo:
Abstract: INTRODUCTION: Before 2004, the occurrence of acute Chagas disease (ACD) by oral transmission associated with food was scarcely known or investigated. Originally sporadic and circumstantial, ACD occurrences have now become frequent in the Amazon region, with recently related outbreaks spreading to several Brazilian states. These cases are associated with the consumption of açai juice by waste reservoir animals or insect vectors infected with Trypanosoma cruzi in endemic areas. Although guidelines for processing the fruit to minimize contamination through microorganisms and parasites exist, açai-based products must be assessed for quality, for which the demand for appropriate methodologies must be met. METHODS: Dilutions ranging from 5 to 1,000 T. cruzi CL Brener cells were mixed with 2mL of acai juice. Four Extraction of T. cruzi DNA methods were used on the fruit, and the cetyltrimethyl ammonium bromide (CTAB) method was selected according to JRC, 2005. RESULTS: DNA extraction by the CTAB method yielded satisfactory results with regard to purity and concentration for use in PCR. Overall, the methods employed proved that not only extraction efficiency but also high sensitivity in amplification was important. CONCLUSIONS: The method for T. cruzi detection in food is a powerful tool in the epidemiological investigation of outbreaks as it turns epidemiological evidence into supporting data that serve to confirm T. cruzi infection in the foods. It also facilitates food quality control and assessment of good manufacturing practices involving acai-based products.
Resumo:
The introduction of molecular biology techniques, especially of DNA analysis, for human identification is a recent advance in legal medicine. Substantial effort has continuously been made in an attempt to identify cadavers and human remains after wars, socio-political problems and mass disasters. In addition, because of the social dynamics of large cities, there are always cases of missing people, as well as unidentified cadavers and human remains that are found. In the last few years, there has also been an increase in requests for exhumation of human remains in order to determine genetic relationships in civil suits and court action. The authors provide an extensive review of the literature regarding the use of this new methodology for human identification of ancient or recent bones.
Resumo:
Até ao final dos anos 40, o DNA não era reconhecido como portador da informação genética. Era uma molécula demasiado simples, difícil de isolar e incompatível com os métodos de análise da química orgânica e da biologia. Quando alguns cientistas começam a acreditar na importância do DNA, percebem que são incapazes, tecnicamente, de determinar a sua estrutura. É nesse espírito que James Watson vai para a Europa e, na primavera de 1951, ao assistir à conferência de Maurice Wilkins, da King’s College, onde vê uma fotografia do padrão de difração de raios X, percebe que será esta a técnica chave para a determinação da estrutura do DNA e, subsequentemente, dos segredos da vida. É este o início de uma das possíveis narrativas sobre uma das principais descobertas científicas do séc. XX que muitas vezes se reduz a: “A dupla hélice do DNA foi descoberta em 1953 por Watson e Crick”. Esta dissertação propõe-se a demonstrar que, apesar de em termos estritos, se tratar de uma afirmação verdadeira, não é suficiente para garantir uma experiência pedagógica significativa, nem fazer jus ao que é o funcionamento da ciência, com todas as implicações humanas, contextuais, éticas, consequências e impacto.
Resumo:
Research and development around indoor positioning and navigation is capturing the attention of an increasing number of research groups and labs around the world. Among the several techniques being proposed for indoor positioning, solutions based on Wi-Fi fingerprinting are the most popular since they exploit existing WLAN infrastructures to support software-only positioning, tracking and navigation applications. Despite the enormous research efforts in this domain, and despite the existence of some commercial products based on Wi-Fi fingerprinting, it is still difficult to compare the performance, in the real world, of the several existing solutions. The EvAAL competition, hosted by the IPIN 2015 conference, contributed to fill this gap. This paper describes the experience of the RTLS@UM team in participating in track 3 of that competition.
Resumo:
The MAP-i Doctoral Program of the Universities of Minho, Aveiro and Porto
Resumo:
The use of chemical analysis of microbial components, including proteins, became an important achievement in the 80’s of the last century to the microbial identification. This led a more objective microbial identification scheme, called chemotaxonomy, and the analytical tools used in the field are mainly 1D/2D gel electrophoresis, spectrophotometry, high-performance liquid chromatography, gas chromatography, and combined gas chromatography-mass spectrometry. The Edman degradation reaction was also applied to peptides sequence giving important insights to the microbial identification. The rapid development of these techniques, in association with knowledge generated by DNA sequencing and phylogeny based on rRNA gene and housekeeping genes sequences, boosted the microbial identification to an unparalleled scale. The recent results of mass spectrometry (MS), like Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight (MALDI-TOF), for rapid and reliable microbial identification showed considerable promise. In addition, the technique is rapid, reliable and inexpensive in terms of labour and consumables when compared with other biological techniques. At present, MALDI-TOF MS adds an additional step for polyphasic identification which is essential when there is a paucity of characters or high DNA homologies for delimiting very close related species. The full impact of this approach is now being appreciated when more diverse species are studied in detail and successfully identified. However, even with the best polyphasic system, identification of some taxa remains time-consuming and determining what represents a species remains subjective. The possibilities opened with new and even more robust mass spectrometers combined with sound and reliable databases allow not only the microbial identification based on the proteome fingerprinting but also include de novo specific proteins sequencing as additional step. These approaches are pushing the boundaries in the microbial identification field.
Resumo:
The use of chemical analysis of microbial components, including proteins, became an important achievement in the 80’s of the last century to the microbial identification. This led a more objective microbial identification scheme, called chemotaxonomy, and the analytical tools used in the field are mainly 1D/2D gel electrophoresis, spectrophotometry, high-performance liquid chromatography, gas chromatography, and combined gas chromatography-mass spectrometry. The Edman degradation reaction was also applied to peptides sequence giving important insights to the microbial identification. The rapid development of these techniques, in association with knowledge generated by DNA sequencing and phylogeny based on rRNA gene and housekeeping genes sequences, boosted the microbial identification to an unparalleled scale. The recent results of mass spectrometry (MS), like Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight (MALDI-TOF), for rapid and reliable microbial identification showed considerable promise. In addition, the technique is rapid, reliable and inexpensive in terms of labour and consumables when compared with other biological techniques. At present, MALDI-TOF MS adds an additional step for polyphasic identification which is essential when there is a paucity of characters or high DNA homologies for delimiting very close related species. The full impact of this approach is now being appreciated when more diverse species are studied in detail and successfully identified. However, even with the best polyphasic system, identification of some taxa remains time-consuming and determining what represents a species remains subjective. The possibilities opened with new and even more robust mass spectrometers combined with sound and reliable databases allow not only the microbial identification based on the proteome fingerprinting but also include de novo specific proteins sequencing as additional step. These approaches are pushing the boundaries in the microbial identification field.
Resumo:
DNA microarrays are one of the most used technologies for gene expression measurement. However, there are several distinct microarray platforms, from different manufacturers, each with its own measurement protocol, resulting in data that can hardly be compared or directly integrated. Data integration from multiple sources aims to improve the assertiveness of statistical tests, reducing the data dimensionality problem. The integration of heterogeneous DNA microarray platforms comprehends a set of tasks that range from the re-annotation of the features used on gene expression, to data normalization and batch effect elimination. In this work, a complete methodology for gene expression data integration and application is proposed, which comprehends a transcript-based re-annotation process and several methods for batch effect attenuation. The integrated data will be used to select the best feature set and learning algorithm for a brain tumor classification case study. The integration will consider data from heterogeneous Agilent and Affymetrix platforms, collected from public gene expression databases, such as The Cancer Genome Atlas and Gene Expression Omnibus.