942 resultados para Current Density Mapping Method
Resumo:
A self-consistent equilibrium calculation, valid for arbitrary aspect ratio tokamaks, is obtained through a direct variational technique that reduces the equilibrium solution, in general obtained from the 2D Grad-Shafranov equation, to a 1D problem in the radial flux coordinate rho. The plasma current profile is supposed to have contributions of the diamagnetic, Pfirsch-Schluter and the neoclassical ohmic and bootstrap currents. An iterative procedure is introduced into our code until the flux surface averaged toroidal current density (J(T)), converges to within a specified tolerance for a given pressure profile and prescribed boundary conditions. The convergence criterion is applied between the (J(T)) profile used to calculate the equilibrium through the variational procedure and the one that results from the equilibrium and given by the sum of all current components. The ohmic contribution is calculated from the neoclassical conductivity and from the self-consistently determined loop voltage in order to give the prescribed value of the total plasma current. The bootstrap current is estimated through the full matrix Hirshman-Sigmar model with the viscosity coefficients as proposed by Shaing, which are valid in all plasma collisionality regimes and arbitrary aspect ratios. The results of the self-consistent calculation are presented for the low aspect ratio tokamak Experimento Tokamak Esferico. A comparison among different models for the bootstrap current estimate is also performed and their possible Limitations to the self-consistent calculation is analysed.
Resumo:
Nanocrystalline Pd-Co alloys were obtained by electrodeposition from an ammoniacal chloride bath. The influence of the crystallite size and the residual stress on the magnetic properties of the alloys was investigated. The residual stress increased as the applied current density was increased. It was associated to the high nucleation rate during electrodeposition and correlated to the lattice strain, estimated from the XRD patterns. Also from the XRD patterns the average crystallite size and the lattice constant were determined by Scherrer's and Rietveld's methods, respectively. Both parameters were directly influenced by the applied current density. Magnetic properties such as coercivity, remanence, saturation magnetization and squareness showed strong dependence on the residual stress and crystallite size. Coercivity higher than 1 kOe was achieved when a high current density was applied. High coercivity was attributed to the presence of residual stress and to the small crystallite size of deposits. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Rare earth (RE) ions have spectroscopic characteristics to emit light in narrow lines, which makes RE complexes with organic ligands candidates for full color OLED (Organic Light Emitting Diode) applications. In particular, beta-diketone rare earth (RE(3+)) complexes show high fluorescence emission efficiency due to the high absorption coefficient of the beta-diketone and energy transfer to the central ion. In this work, the fabrication and the electroluminescent properties of devices containing a double and triple-layer OLED using a new beta-diketone complex, [Eu(bmdm)(3)(tppo)(2)], as transporting and emitting layers are compared and discussed. The double and triple-layer devices based on this complex present the following configurations respectively: device 1: ITO/TPD (40 nm)/[Eu(bmdm)(3)(tppo)(2)] (40 nm)/Al (150 nm); device 2: ITO/TPD (40 nm)/[Eu(bmdm)(3) (tppo)(2)] (40 nm)/Alq(3) (20 nm)/Al (150 nm) and device 3: ITO/TPD (40 nm)/bmdm-ligand (40 nm)/Al (150 nm), were TPD is (N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1-biphenil-4,4-diamine) and bmdm is butyl methoxy-dibenzoyl-methane. All the films were deposited by thermal evaporation carried out in a high vacuum system. These devices exhibit high intensity photo- (PL) and electro-luminescent (EL) emission. Electroluminescence spectra show emission from Eu(3+) ions attributed to the (5)D(0) to (7)F(J) (J = 0, 1, 2, 3 and 4) transitions with the hypersensitive (5)D(o) -> (7)F(2) transition (around 612 nm) as the most prominent one. Moreover, a transition from (5)D(1) to (7)F(1) is also observed around 538 nm. The OLED light emission was almost linear with the current density. The EL CIE chromaticity coordinates (X = 0.66 and Y = 0.33) show the dominant wavelength, lambda(d) = 609 nm, and the color gamut achieved by this device is 0.99 in the CIE color space. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
BiFeO3 (BFO) thin films were fabricated on Pt(111)/Ti/SiO2/Si substrates by using a polymeric precursor solution under appropriate crystallization conditions. The capacitance dependence on voltage is strongly nonlinear, confirming the ferroelectric properties of the films resulting from the domain switching. The leakage current density increases with annealing temperature. The polarization electric field curves could be obtained in BFO films annealed at 500 degrees C, free of secondary phases. X-ray photoelectron spectroscopy spectra of films annealed at 500 degrees C indicated that the oxidation state of Fe was purely 3+, demonstrating that our films possess stable chemical configurations. (c) 2007 American Institute of Physics.
Resumo:
The effects of bath composition and electroplating conditions on structure, morphology, and composition of amorphous Fe-Cr-P-Co deposits on AISI 1020 steel substrate, priorly plated with a thin Cu deposit, were investigated. The increase of charge density activates the inclusion of Cr in the deposit. However, above specific values of the charge density, which depend on the deposition current density, the Cr content in the deposit decreases. This Cr content decreasing is probably due to the significant hydrogen evolution with the increasing of deposition cur-rent and charge density. The effect of charge density on the content of Fe and Co is not clear. However, there is a tendency of increasing of Fe content and decreasing of Co content with the raising of current density. The Co is more easily deposited than the P, and its presence results in a more intense inhibition effect on the Cr deposition than the inhibition effect caused by P presence. Scanning electron microscope (SEM) analysis showed that Co increasing in the Fe-Cr-P-Co alloys analyzed does not promote the susceptibility to microcracks, which led to a good quality deposit. The passive film of the Fe-Cr-P-Co alloy shows a high ability formation and high protective capacity, and the results obtained by current density of corrosion, j(cor), show that the deposit with addition of Co, Fe31Cr11P28Co30, presents a higher corrosion resistance than the deposit with addition of Ni, Fe54Cr21P20Ni5. (C) 2004 Published by Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effect of magnetic field enhanced plasma immersion ion implantation (PIII) in silicon substrate has been investigated at low and high pulsed bias voltages. The magnetic field in magnetic bottle configuration was generated by two magnetic coils installed outside the vacuum chamber. The presence of both, electric and magnetic field in PIII creates a system of crossed E x B fields, promoting plasma rotation around the target. The magnetized electrons drifting in crossed E x B fields provide electron-neutral collision. Consequently, the efficient background gas ionization augments the plasma density around the target where a magnetic confinement is achieved. As a result, the ion current density increases, promoting changes in the samples surface properties, especially in the surface roughness and wettability and also an increase of implantation dose and depth. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
We report on the properties of BaBi2Ta2O9 (BBT) thin films for dynamic random-access memory (DRAM) and integrated capacitor applications. Crystalline BBT thin films were successfully fabricated by the chemical solution deposition technique on Pt-coated Si substrates at a low annealing temperature of 650°C. The films were characterized in terms of structural, dielectric, and insulating properties. The electrical measurements were conducted on Pt/BBT/Pt capacitors. The typical measured small signal dielectric constant and dissipation factor, at 100 kHz, were 282 and 0.023, respectively, for films annealed at 700°C for 60 min. The leakage current density of the films was lower than 10-9 A/cm2 at an applied electric field of 300 kV/cm. A large storage density of 38.4 fC/μm2 was obtained at an applied electric field of 200 kV/cm. The high dielectric constant, low dielectric loss and low leakage current density suggest the suitability of BBT thin films as dielectric layer for DRAM and integrated capacitor applications.
Resumo:
The effect of bath composition and electroplating conditions on structure, morphology and composition of amorphous Fe-Cr-P-Ni-C deposits on Cu substrate was investigated. The deposition efficiency of Fe-Ni-P-C alloy increased significantly with the addition of formic acid, but decreased with the addition of Cr to the plating bath. The increase of charge density activates the inclusion of Cr in the deposit. However, above a specific value of charge density, which depends on deposition current density, the Cr content in the deposit decreases. SEM analysis showed that the increase of Ni, Cr or charge deposition promotes susceptibility to microcracking.
Resumo:
The biggest advantage of plasma immersion ion implantation (PIII) is the capability of treating objects with irregular geometry without complex manipulation of the target holder. The effectiveness of this approach relies on the uniformity of the incident ion dose. Unfortunately, perfect dose uniformity is usually difficult to achieve when treating samples of complex shape. The problems arise from the non-uniform plasma density and expansion of plasma sheath. A particle-in-cell computer simulation is used to study the time-dependent evolution of the plasma sheath surrounding two-dimensional objects during process of plasma immersion ion implantation. Before starting the implantation phase, steady-state nitrogen plasma is established inside the simulation volume by using ionization of gas precursor with primary electrons. The plasma self-consistently evolves to a non-uniform density distribution, which is used as initial density distribution for the implantation phase. As a result, we can obtain a more realistic description of the plasma sheath expansion and dynamics. Ion current density on the target, average impact energy, and trajectories of the implanted ions were calculated for three geometrical shapes. Large deviations from the uniform dose distribution have been observed for targets with irregular shapes. In addition, effect of secondary electron emission has been included in our simulation and no qualitative modifications to the sheath dynamics have been noticed. However, the energetic secondary electrons change drastically the plasma net balance and also pose significant X-ray hazard. Finally, an axial magnetic field has been added to the calculations and the possibility for magnetic insulation of secondary electrons has been proven.
Resumo:
Fuel cell as MCFC (molten carbonate fuel cell) operate at high temperatures, and due to this issue, cogeneration processes may be performed, sending heat for own process or other purposes as steam generation in an industry. The use of ethanol for this purpose is one of the best options because this is a renewable and less environmentally offensive fuel, and cheaper than oil-derived hydrocarbons (in the case of Brazil). In the same country, because of technical, environmental and economic advantages, the use of ethanol by steam reforming process have been the most investigated process. The objective of this study is to show a thermodynamic analysis of steam reforming of ethanol, to determine the best thermodynamic conditions where are produced the highest volumes of products, making possible a higher production of energy, that is, a most-efficient use of resources. To attain this objective, mass and energy balances are performed. Equilibrium constants and advance degrees are calculated to get the best thermodynamic conditions to attain higher reforming efficiency and, hence, higher electric efficiency, using the Nernst equation. The advance degree of reforming increases when the operation temperature also increases and when the operation pressure decreases. But at atmospheric pressure (1 atm), the advance degree tends to the stability in temperatures above 700°C, that is, the volume of supplemental production of reforming products is very small for the high use of energy resources necessary. Reactants and products of the steam-reforming of ethanol that weren't used may be used for the reforming. The use of non-used ethanol is also suggested for heating of reactants before reforming. The results show the behavior of MCFC. The current density, at same tension, is higher at 700°C than other studied temperatures as 600 and 650°C. This fact occurs due to smaller use of hydrogen at lower temperatures that varies between 46.8 and 58.9% in temperatures between 600 and 700°C. The higher calculated current density is 280 mA/cm 2. The power density increases when the volume of ethanol to be used also increases due to higher production of hydrogen. The highest produced power at 190 mW/cm 2 is 99.8, 109.8 and 113.7 mW/cm2 for 873, 923 and 973K, respectively. The thermodynamic efficiency has the objective to show the connection among operational conditions and energetic factors, which are some parameters that describes a process of internal steam reforming of ethanol.
Resumo:
In order to study the influence of the amorphous Boron powder on the superconducting properties, MgB2 bulk samples were prepared using 96% and 99% pure commercial Boron powder as well as 92% commercial Boron powder after purification process. The results showed that the original 96% and the purified 92% powders have larger particle size compared to the pure 99% Boron powder, which leads to reduce magnetic critical current densities. In order to get higher performance MgB2, the purified low grade Boron powder need further control of their microstructure such as smaller particle size to enhance flux pinning from the grain boundaries which represent effective pinning centers. © 2007 Elsevier B.V. All rights reserved.
Resumo:
MgB2 bulk samples containing different proportions of Mg-Ga powder were prepared by an in situ reaction technique. The Mg-Ga powder was obtained via high energy ball milling of a Mg-10 at.% Ga composite, which was fabricated by melting of pure magnesium and gallium metals inside encapsulated stainless steel tube at 655 °C in a controlled atmosphere. The MgB2 samples containing 0, 1, 3, 5 and 7 wt.% of MgGa addition were sintered at 650 °C for 30 min in argon atmosphere. Magnetic measurements performed at 5 K and 20 K showed improved critical current density, Jc, in the low magnetic field range for samples with MgGa addition. The critical temperature, Tc, for all samples with gallium additions is consistently higher when compared to the pure MgB2. © 2007 Elsevier B.V. All rights reserved.
Resumo:
We present a non-linear symplectic map that describes the alterations of the magnetic field lines inside the tokamak plasma due to the presence of a robust torus (RT) at the plasma edge. This RT prevents the magnetic field lines from reaching the tokamak wall and reduces, in its vicinity, the islands and invariant curve destruction due to resonant perturbations. The map describes the equilibrium magnetic field lines perturbed by resonances created by ergodic magnetic limiters (EMLs). We present the results obtained for twist and non-twist mappings derived for monotonic and non-monotonic plasma current density radial profiles, respectively. Our results indicate that the RT implementation would decrease the field line transport at the tokamak plasma edge. © 2010 Elsevier B.V. All rights reserved.