793 resultados para Convex


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the first phase of a project attempting to construct an efficient general-purpose nonlinear optimizer using an augmented Lagrangian outer loop with a relative error criterion, and an inner loop employing a state-of-the art conjugate gradient solver. The outer loop can also employ double regularized proximal kernels, a fairly recent theoretical development that leads to fully smooth subproblems. We first enhance the existing theory to show that our approach is globally convergent in both the primal and dual spaces when applied to convex problems. We then present an extensive computational evaluation using the CUTE test set, showing that some aspects of our approach are promising, but some are not. These conclusions in turn lead to additional computational experiments suggesting where to next focus our theoretical and computational efforts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Nonlinear Programming algorithm that converges to second-order stationary points is introduced in this paper. The main tool is a second-order negative-curvature method for box-constrained minimization of a certain class of functions that do not possess continuous second derivatives. This method is used to define an Augmented Lagrangian algorithm of PHR (Powell-Hestenes-Rockafellar) type. Convergence proofs under weak constraint qualifications are given. Numerical examples showing that the new method converges to second-order stationary points in situations in which first-order methods fail are exhibited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given a fixed set of identical or different-sized circular items, the problem we deal with consists on finding the smallest object within which the items can be packed. Circular, triangular, squared, rectangular and also strip objects are considered. Moreover, 2D and 3D problems are treated. Twice-differentiable models for all these problems are presented. A strategy to reduce the complexity of evaluating the models is employed and, as a consequence, instances with a large number of items can be considered. Numerical experiments show the flexibility and reliability of the new unified approach. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Augmented Lagrangian methods for large-scale optimization usually require efficient algorithms for minimization with box constraints. On the other hand, active-set box-constraint methods employ unconstrained optimization algorithms for minimization inside the faces of the box. Several approaches may be employed for computing internal search directions in the large-scale case. In this paper a minimal-memory quasi-Newton approach with secant preconditioners is proposed, taking into account the structure of Augmented Lagrangians that come from the popular Powell-Hestenes-Rockafellar scheme. A combined algorithm, that uses the quasi-Newton formula or a truncated-Newton procedure, depending on the presence of active constraints in the penalty-Lagrangian function, is also suggested. Numerical experiments using the Cute collection are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optimization methods that employ the classical Powell-Hestenes-Rockafellar augmented Lagrangian are useful tools for solving nonlinear programming problems. Their reputation decreased in the last 10 years due to the comparative success of interior-point Newtonian algorithms, which are asymptotically faster. In this research, a combination of both approaches is evaluated. The idea is to produce a competitive method, being more robust and efficient than its `pure` counterparts for critical problems. Moreover, an additional hybrid algorithm is defined, in which the interior-point method is replaced by the Newtonian resolution of a Karush-Kuhn-Tucker (KKT) system identified by the augmented Lagrangian algorithm. The software used in this work is freely available through the Tango Project web page:http://www.ime.usp.br/similar to egbirgin/tango/.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two Augmented Lagrangian algorithms for solving KKT systems are introduced. The algorithms differ in the way in which penalty parameters are updated. Possibly infeasible accumulation points are characterized. It is proved that feasible limit points that satisfy the Constant Positive Linear Dependence constraint qualification are KKT solutions. Boundedness of the penalty parameters is proved under suitable assumptions. Numerical experiments are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let A be a finite dimensional k-algebra over an algebraically closed field. Assume A=kQ/I where Q is a quiver without oriented cycles. We say that A is tilt-critical if it is not tilted but every proper convex subcategory of A is tilted. We describe the tilt-critical algebras which are strongly simply connected and tame.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let (M, g) be a complete Riemannian Manifold, Omega subset of M an open subset whose closure is diffeomorphic to an annulus. If partial derivative Omega is smooth and it satisfies a strong concavity assumption, then it is possible to prove that there are at least two geometrically distinct geodesics in (Omega) over bar = Omega boolean OR partial derivative Omega starting orthogonally to one connected component of partial derivative Omega and arriving orthogonally onto the other one. The results given in [6] allow to obtain a proof of the existence of two distinct homoclinic orbits for an autonomous Lagrangian system emanating from a nondegenerate maximum point of the potential energy, and a proof of the existence of two distinct brake orbits for a. class of Hamiltonian systems. Under a further symmetry assumption, it is possible to show the existence of at least dim(M) pairs of geometrically distinct geodesics as above, brake orbits and homoclinics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we introduce a necessary sequential Approximate-Karush-Kuhn-Tucker (AKKT) condition for a point to be a solution of a continuous variational inequality, and we prove its relation with the Approximate Gradient Projection condition (AGP) of Garciga-Otero and Svaiter. We also prove that a slight variation of the AKKT condition is sufficient for a convex problem, either for variational inequalities or optimization. Sequential necessary conditions are more suitable to iterative methods than usual punctual conditions relying on constraint qualifications. The AKKT property holds at a solution independently of the fulfillment of a constraint qualification, but when a weak one holds, we can guarantee the validity of the KKT conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The subgradient optimization method is a simple and flexible linear programming iterative algorithm. It is much simpler than Newton's method and can be applied to a wider variety of problems. It also converges when the objective function is non-differentiable. Since an efficient algorithm will not only produce a good solution but also take less computing time, we always prefer a simpler algorithm with high quality. In this study a series of step size parameters in the subgradient equation is studied. The performance is compared for a general piecewise function and a specific p-median problem. We examine how the quality of solution changes by setting five forms of step size parameter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nesta dissertação apresentamos e desenvolvemos o Método de Perron, fazendo uma aplicação ao ploblema de Dirichlet para a equação das superfícies de curvatura média constante em R3. Apresentamos também uma extensão deste método dentro de EDP's e, por fim, obtemos uma extensão geométrica que se aplica a superfícies ao invés de gráficos. Comentamos a aplicação deste método geométrico á existência de superfícies mínimas tendo como bordo duas curvas convexas em planos paralelos do R3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we consider strictly convex monotone continuous complete preorderings on R+n that are locally representable by a concave utility function. By Alexandroff 's (1939) theorem, this function is twice dífferentiable almost everywhere. We show that if the bordered hessian determinant of a concave utility representation vanishes on a null set. Then demand is countably rectifiable, that is, except for a null set of bundles, it is a countable union of c1 manifolds. This property of consumer demand is enough to guarantee that the equilibrium prices of apure exchange economy will be locally unique, for almost every endowment. We give an example of an economy satisfying these conditions but not the Katzner (1968) - Debreu (1970, 1972) smoothness conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We apply the concept of exchangeable random variables to the case of non-additive robability distributions exhibiting ncertainty aversion, and in the lass generated bya convex core convex non-additive probabilities, ith a convex core). We are able to rove two versions of the law of arge numbers (de Finetti's heorems). By making use of two efinitions. of independence we rove two versions of the strong law f large numbers. It turns out that e cannot assure the convergence of he sample averages to a constant. e then modal the case there is a true" probability distribution ehind the successive realizations of the uncertain random variable. In this case convergence occurs. This result is important because it renders true the intuition that it is possible "to learn" the "true" additive distribution behind an uncertain event if one repeatedly observes it (a sufficiently large number of times). We also provide a conjecture regarding the "Iearning" (or updating) process above, and prove a partia I result for the case of Dempster-Shafer updating rule and binomial trials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this note, in an independent private values auction framework, I discuss the relationship between the set of types and the distribution of types. I show that any set of types, finite dimensional or not, can be extended to a larger set of types preserving incentive compatibility constraints, expected revenue and bidder’s expected utilities. Thus for example we may convexify a set of types making our model amenable to the large body of theory in economics and mathematics that relies on convexity assumptions. An interesting application of this extension procedure is to show that although revenue equivalence is not valid in general if the set of types is not convex these mechanism have underlying distinct allocation mechanism in the extension. Thus we recover in these situations the revenue equivalence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A dificuldade em se caracterizar alocações ou equilíbrios não estacionários é uma das principais explicações para a utilização de conceitos e hipóteses que trivializam a dinâmica da economia. Tal dificuldade é especialmente crítica em Teoria Monetária, em que a dimensionalidade do problema é alta mesmo para modelos muito simples. Neste contexto, o presente trabalho relata a estratégia computacional de implementação do método recursivo proposto por Monteiro e Cavalcanti (2006), o qual permite calcular a sequência ótima (possivelmente não estacionária) de distribuições de moeda em uma extensão do modelo proposto por Kiyotaki e Wright (1989). Três aspectos deste cálculo são enfatizados: (i) a implementação computacional do problema do planejador envolve a escolha de variáveis contínuas e discretas que maximizem uma função não linear e satisfaçam restrições não lineares; (ii) a função objetivo deste problema não é côncava e as restrições não são convexas; e (iii) o conjunto de escolhas admissíveis não é conhecido a priori. O objetivo é documentar as dificuldades envolvidas, as soluções propostas e os métodos e recursos disponíveis para a implementação numérica da caracterização da dinâmica monetária eficiente sob a hipótese de encontros aleatórios.