914 resultados para Contact thermal resistance
Resumo:
We study the effective interaction between two ellipsoidal particles at the interface of two fluid phases which are mediated by thermal fluctuations of the interface. Within a coarse-grained picture, the properties of fluid interfaces are very well described by an effective capillary wave Hamiltonian which governs both the equilibrium interface configuration and the thermal fluctuations (capillary waves) around this equilibrium (or mean-field) position. As postulated by the Goldstone theorem the capillary waves are long-range correlated. The interface breaks the continuous translational symmetry of the system, and in the limit of vanishing external fields - like gravity - it has to be accompanied by easily excitable long wavelength (Goldstone) modes – precisely the capillary waves. In this system the restriction of the long-ranged interface fluctuations by particles gives rise to fluctuation-induced forces which are equivalent to interactions of Casimir type and which are anisotropic in the interface plane. Since the position and the orientation of the colloids with respect to the interface normal may also fluctuate, this system is an example for the Casimir effect with fluctuating boundary conditions. In the approach taken here, the Casimir interaction is rewritten as the interaction between fluctuating multipole moments of an auxiliary charge density-like field defined on the area enclosed by the contact lines. These fluctuations are coupled to fluctuations of multipole moments of the contact line position (due to the possible position and orientational fluctuations of the colloids). We obtain explicit expressions for the behavior of the Casimir interaction at large distances for arbitrary ellipsoid aspect ratios. If colloid fluctuations are suppressed, the Casimir interaction at large distances is isotropic, attractive and long ranged (double-logarithmic in the distance). If, however, colloid fluctuations are included, the Casimir interaction at large distances changes to a power law in the inverse distance and becomes anisotropic. The leading power is 4 if only vertical fluctuations of the colloid center are allowed, and it becomes 8 if also orientational fluctuations are included.
Resumo:
In the present work, a detailed analysis of a Mediterranean TLC occurred in January 2014 has been conducted. The author is not aware of other studies regarding this particular event at the publication of this thesis. In order to outline the cyclone evolution, observational data, including weather-stations data, satellite data, radar data and photographic evidence, were collected at first. After having identified the cyclone path and its general features, the GLOBO, BOLAM and MOLOCH NWP models, developed at ISAC-CNR (Bologna), were used to simulate the phenomenon. Particular attention was paid on the Mediterranean phase as well as on the Atlantic phase, since the cyclone showed a well defined precursor up to 3 days before the minimum formation in the Alboran Sea. The Mediterranean phase has been studied using different combinations of GLOBO, BOLAM and MOLOCH models, so as to evaluate the best model chain to simulate this kind of phenomena. The BOLAM and MOLOCH models showed the best performance, by adjusting the path erroneously deviated in the National Centre for Environmental Prediction (NCEP) and ECMWF operational models. The analysis of the cyclone thermal phase shown the presence of a deep-warm core structure in many cases, thus confirming the tropical-like nature of the system. Furthermore, the results showed high sensitivity to initial conditions in the whole lifetime of the cyclone, while the Sea Surface Temperature (SST) modification leads only to small changes in the Adriatic phase. The Atlantic phase has been studied using GLOBO and BOLAM model and with the aid of the same methodology already developed. After tracing the precursor, in the form of a low-pressure system, from the American East Coast to Spain, the thermal phase analysis was conducted. The parameters obtained showed evidence of a deep-cold core asymmetric structure during the whole Atlantic phase, while the first contact with the Mediterranean Sea caused a sudden transition to a shallow-warm core structure. The examination of Potential Vorticity (PV) 3-dimensional structure revealed the presence of a PV streamer that individually formed over Greenland and eventually interacted with the low-pressure system over the Spanish coast, favouring the first phase of the cyclone baroclinic intensification. Finally, the development of an automated system that tracks and studies the thermal phase of Mediterranean cyclones has been encouraged. This could lead to the forecast of potential tropical transition, against with a minimum computational investment.
Resumo:
Thermoelektrizität beschreibt die reversible Beeinflussung und Wechselwirkung von Elektrizität und Temperatur T in Systemen abseits des thermischen Gleichgewichtes. In diesen führt ein Temperaturgradient entlang eines thermoelektrischen Materials zu einem kontinuierlichen Ungleichgewicht in der Energieverteilung der Ladungsträger. Dies hat einen Diffusionsstrom der energiereichen Ladungsträger zum kalten Ende und der energiearmen Ladungsträger zum heißen Ende zur Folge. Da in offenen Stromkreisen kein Strom fließt, wird ein Ungleichgewicht der Ströme über das Ausbilden eines elektrischen Feldes kompensiert. Die dadurch entstehende Spannung wird als Seebeck Spannung bezeichnet. Über einen geeigneten Verbraucher, folgend aus dem Ohm'schen Gesetz, kann nun ein Strom fließen und elektrische Energie gewonnen werden. Den umgekehrten Fall beschreibt der sogenannte Peltier Effekt, bei dem ein Stromfluss durch zwei unterschiedliche miteinander verbundene Materialien ein Erwärmen oder Abkühlen der Kontaktstelle zur Folge hat. Die Effizienz eines thermoelektrischen Materials kann über die dimensionslose Größe ZT=S^2*sigma/kappa*T charakterisiert werden. Diese setzt sich zusammen aus den materialspezifischen Größen der elektrischen Leitfähigkeit sigma, der thermischen Leitfähigkeit kappa und dem Seebeck Koeffizienten S als Maß der erzeugten Spannung bei gegebener Temperaturdifferenz. Diese Arbeit verfolgt den Ansatz glaskeramische Materialien mit thermoelektrischen Kristallphasen zu synthetisieren, sie strukturell zu charakterisieren und ihre thermoelektrischen Eigenschaften zu messen, um eine Struktur-Eigenschaft Korrelation zu erarbeiten. Hierbei werden im Detail eine elektronenleitende (Hauptphase SrTi_xNb_{1-x}O_3) sowie eine löcherleitende Glaskeramik (Hauptphase Bi_2Sr_2Co_2O_y) untersucht. Unter dem Begriff Glaskeramiken sind teilkristalline Materialien zu verstehen, die aus Glasschmelzen durch gesteuerte Kristallisation hergestellt werden können. Über den Grad der Kristallisation und die Art der ausgeschiedenen Spezies an Kristallen lassen sich die physikalischen Eigenschaften dieser Systeme gezielt beeinflussen. Glaskeramiken bieten, verursacht durch ihre Restglasphase, eine niedrige thermische Leitfähigkeit und die Fermi Energie lässt sich durch Dotierungen in Richtung des Leitungs- oder Valenzbands verschieben. Ebenso besitzen glaskeramische Materialien durch ihre Porenfreiheit verbesserte mechanische Eigenschaften gegenüber Keramiken und sind weniger anfällig für den Einfluss des Sauerstoffpartialdruckes p_{O_2} auf die Parameter. Ein glaskeramisches und ein gemischt keramisch/glaskeramisches thermoelektrisches Modul aus den entwickelten Materialien werden konzipiert, präpariert, kontaktiert und bezüglich ihrer Leistung vermessen.
Resumo:
Ecological speciation is defined as the emergence of reproductive isolation as a direct or indirect consequence of divergent ecological adaptation. Several empirical examples of ecological speciation have been reported in the literature which very often involve adaptation to biotic resources. In this review, we investigate whether adaptation to different thermal habitats could also promote speciation and try to assess the importance of such processes in nature. Our survey of the literature identified 16 animal and plant systems where divergent thermal adaptation may underlie (partial) reproductive isolation between populations or may allow the stable coexistence of sibling taxa. In many of the systems, the differentially adapted populations have a parapatric distribution along an environmental gradient. Isolation often involves extrinsic selection against locally maladapted parental or hybrid genotypes, and additional pre- or postzygotic barriers may be important. Together, the identified examples strongly suggest that divergent selection between thermal environments is often strong enough to maintain a bimodal genotype distribution upon secondary contact. What is less clear from the available data is whether it can also be strong enough to allow ecological speciation in the face of gene flow through reinforcement-like processes. It is possible that intrinsic features of thermal gradients or the genetic basis of thermal adaptation make such reinforcement-like processes unlikely but it is equally possible that pertinent systems are understudied. Overall, our literature survey highlights (once again) the dearth of studies that investigate similar incipient species along the continuum from initial divergence to full reproductive isolation and studies that investigate all possible reproductive barriers in a given system.
Resumo:
While nucleation of solids in supercooled liquids is ubiquitous [15, 65, 66], surface crystallization, the tendency for freezing to begin preferentially at the liquid-gas interface, has remained puzzling [74, 18, 68, 69, 51, 64, 72, 16]. Here we employ high-speed imaging of supercooled water drops to study the phenomenon of heterogeneous surface crystallization. Our geometry avoids the "point-like contact" of prior experiments by providing a simple, symmetric contact line (triple line defined by the substrate-liquid-air interface) for a drop resting on a homogeneous silicon substrate. We examine three possible mechanisms that might explain these laboratory observations: (i) Line Tension at the triple line, (ii) Thermal Gradients within the droplets and (iii) Surface Texture. In our first study we record nearly perfect spatial uniformity in the immersed (liquid-substrate) region and, thereby, no preference for nucleation at the triple line. In our second study, no influence of thermal gradients on the preference for freezing at the triple line was observed. Motivated by the conjectured importance of line tension (τ) [1, 66] for heterogeneous nucleation, we also searched for evidence of a transition to surface crystallization at length scales on the order of δ ∼ τ/σ, where σ is the surface tension [14]; poorly constrained τ [49] leads to δ ranging from microns to nanometers. We demonstrate that nano-scale texture causes a shift in the nucleation to the three-phase contact line, while micro-scale texture does not. The possibility of a critical length scale has implications for the effectiveness of nucleation catalysts, including formation of ice in atmospheric clouds [7].
Resumo:
Liquid films, evaporating or non-evaporating, are ubiquitous in nature and technology. The dynamics of evaporating liquid films is a study applicable in several industries such as water recovery, heat exchangers, crystal growth, drug design etc. The theory describing the dynamics of liquid films crosses several fields such as engineering, mathematics, material science, biophysics and volcanology to name a few. Interfacial instabilities typically manifest by the undulation of an interface from a presumed flat state or by the onset of a secondary flow state from a primary quiescent state or both. To study the instabilities affecting liquid films, an evaporating/non-evaporating Newtonian liquid film is subject to a perturbation. Numerical analysis is conducted on configurations of such liquid films being heated on solid surfaces in order to examine the various stabilizing and destabilizing mechanisms that can cause the formation of different convective structures. These convective structures have implications towards heat transfer that occurs via this process. Certain aspects of this research topic have not received attention, as will be obvious from the literature review. Static, horizontal liquid films on solid surfaces are examined for their resistance to long wave type instabilities via linear stability analysis, method of normal modes and finite difference methods. The spatiotemporal evolution equation, available in literature, describing the time evolution of a liquid film heated on a solid surface, is utilized to analyze various stabilizing/destabilizing mechanisms affecting evaporating and non-evaporating liquid films. The impact of these mechanisms on the film stability and structure for both buoyant and non-buoyant films will be examined by the variation of mechanical and thermal boundary conditions. Films evaporating in zero gravity are studied using the evolution equation. It is found that films that are stable to long wave type instabilities in terrestrial gravity are prone to destabilization via long wave instabilities in zero gravity.
Resumo:
Campylobacter jejuni is the most important cause of bacterial gastroenteritis in humans. It is a commensal in many wild and domestic animals, including dogs. Whereas genotypes of human and chicken C. jejuni isolates have been described in some detail, only little information on canine C. jejuni genotypes is available. To gain more information on genotypes of canine C. jejuni and their zoonotic potential, isolates from routine diagnostics of diarrheic dogs as well as isolates of a prevalence study in non-diarrheic dogs were analyzed. Prevalence of thermophilic Campylobacter among non-diarrheic dogs was 6.3% for C. jejuni, 5.9% for Campylobacter upsaliensis and 0.7% for Campylobacter coli. The C. jejuni isolates were genotyped by multi locus sequence typing (MLST) and flaB typing. Resistance to macrolides and quinolones was genetically determined in parallel. Within the 134 genotyped C. jejuni isolates 57 different sequence types (ST) were found. Five STs were previously unrecognized. The most common STs were ST-48 (11.2%), ST-45 (10.5%) and ST-21 (6.0%). Whereas no macrolide resistance was found, 28 isolates (20.9%) were resistant to quinolones. ST-45 was significantly more prevalent in diarrheic than in non-diarrheic dogs. Within the common time frame of isolation 94% of the canine isolates had a ST that was also found in human clinical isolates. In conclusion, prevalence of C. jejuni in Swiss dogs is low but there is a large genetic overlap between dog and human isolates. Given the close contact between human and dogs, the latter should not be ignored as a potential source of human campylobacteriosis.
Resumo:
The cfr (chloramphenicol-florfenicol resistance) gene encodes a 23S rRNA methyltransferase that confers resistance to linezolid. Detection of linezolid resistance was evaluated in the first cfr-carrying human hospital isolate of linezolid and methicillin-resistant Staphylococcus aureus (designated MRSA CM-05) by dilution and diffusion methods (including Etest). The presence of cfr was investigated in isolates of staphylococci colonizing the patient's household contacts and clinical isolates recovered from patients in the same unit where MRSA CM-05 was isolated. Additionally, 68 chloramphenicol-resistant Colombian MRSA isolates recovered from hospitals between 2001 and 2004 were screened for the presence of the cfr gene. In addition to erm(B), the erm(A) gene was also detected in CM-05. The isolate belonged to sequence type 5 and carried staphylococcal chromosomal cassette mec type I. We were unable to detect the cfr gene in any of the human staphylococci screened (either clinical or colonizing isolates). Agar and broth dilution methods detected linezolid resistance in CM-05. However, the Etest and disk diffusion methods failed to detect resistance after 24 h of incubation. Oxazolidinone resistance mediated by the cfr gene is rare, and acquisition by a human isolate appears to be a recent event in Colombia. The detection of cfr-mediated linezolid resistance might be compromised by the use of the disk diffusion or Etest method.
Resumo:
Thermal and mechanical material properties determine comet evolution and even solar system formation because comets are considered remnant volatile-rich planetesimals. Using data from the Multipurpose Sensors for Surface and Sub-Surface Science (MUPUS) instrument package gathered at the Philae landing site Abydos on comet 67P/Churyumov-Gerasimenko, we found the diurnal temperature to vary between 90 and 130 K. The surface emissivity was 0.97, and the local thermal inertia was 85 +/- 35 J m(-2) K(-1)s(-1/2). The MUPUS thermal probe did not fully penetrate the near-surface layers, suggesting a local resistance of the ground to penetration of >4 megapascals, equivalent to >2 megapascal uniaxial compressive strength. A sintered near-surface microporous dust-ice layer with a porosity of 30 to 65% is consistent with the data.
Resumo:
Brain metastasis is resistant to chemotherapy while the leaky blood-brain-barrier in brain metastasis can not be the underlying reason. Metastatic tumor cells (“seed”) exploit the host microenvironment (“soil”) for survival advantages. Astrocytes which maintain the homeostasis of the brain microenvironment become reactive subsequent to brain damages and protect neurons from various injuries. We observed reactive astrocytes surrounding and infiltrating into brain metastasis in both clinical specimen and experimental animal model, thus raising a possibility that reactive astrocytes may protect tumor cells from cytotoxic chemotherapeutic drugs. ^ To test this hypothesis, we first generated an immortalized astrocyte cell line from H-2Kb-tsA58 mice. The immortal mouse astrocytes expressed specific markers including GFAP. Scanning electron microscopy demonstrated that astrocytes formed direct physical contact with tumor cells. Moreover, the expression of GFAP by astrocytes was up-regulated subsequent to co-culture with tumor cells, indicating that the co-culture of astrocytes and tumor cells may serve as a model to recapitulate the pathophysiological situation of brain metastasis. ^ In co-culture, astrocytes dramatically reduced apoptosis of tumor cells produced by various chemotherapeutic drugs. This protection effect was not because of culturing cells from different species since mouse fibroblasts did not protect tumor cells from chemotherapy. Furthermore, the protection by astrocytes was completely dependent on a physical contact. ^ Gap junctional communication (GJC) served as this physical contact. Tumor cells and astrocytes both expressed the major component of gap junctional channel—connexin 43 and formed functional GJC as evidenced by the “dye transfer” assay. The blockage of GJC between tumor cells and astrocytes by either specific chemical blocker carbenoxolone (CBX) or by genetically knocking down connexin 43 on astrocytes reversed the chemo-protection. ^ Calcium was the signal molecule transmitted through GJC that rescued tumor cells from chemotherapy. Accumulation of cytoplasmic calcium preceded the progress of apoptosis in tumor cells treated with chemotherapeutic drugs. Furthermore, chelation of accumulated cytoplasmic calcium inhibited the apoptosis of tumor cells treated with chemotherapeutic drugs. Most importantly, astrocytes could “shunt” the accumulated cytoplasmic calcium from tumor cells (treated with chemotherapeutic drug) through GJC. We also used gene expression micro-array to investigate global molecular consequence of tumor cells forming GJC with astrocytes. The data demonstrated that astrocytes (but not fibroblasts), through GJC, up-regulated the expressions of several well known survival genes in tumor cells. ^ In summary, this dissertation provides a novel mechanism underlying the resistance of brain metastasis to chemotherapy, which is due to protection by astrocytes through GJC. Interference with the GJC between astrocytes and tumor cells holds great promise in sensitizing brain metastasis to chemotherapy and improving the prognosis for patients with brain metastasis. ^
Resumo:
High-resolution biostratigraphic and quantitative studies of subtropical Pacific planktonic foraminiferal assemblages (Ocean Drilling Program, Leg 198 Shatsky Rise, Sites 1209 and 1210) are performed to analyse the faunal changes associated with the Paleocene-Eocene Thermal Maximum (PETM) at about 55.5 Ma. At Shatsky Rise, the onset of the PETM is marked by the abrupt onset of a negative carbon isotope excursion close to the contact between carbonate-rich ooze and overlying clay-rich ooze and corresponds to a level of poor foraminiferal preservation as a result of carbonate dissolution. Lithology, planktonic foraminiferal distribution and abundances, calcareous plankton and benthic events, and the negative carbon isotope excursion allow precise correlation of the two Shatsky Rise records. Results from quantitative analyses show that Morozovella dominates the assemblages and that its maximum relative abundance is coincident with the lowest delta 13C values, whereas subbotinids are absent in the interval of maximum abundance of Morozovella. The excursion taxa (Acarinina africana, Acarinina sibaiyaensis, and Morozovella allisonensis) first appear at the base of the event. Comparison between the absolute abundances of whole specimens and fragments of genera demonstrate that the increase in absolute abundance of Morozovella and the decrease of Subbotina are not an artifact of selective dissolution. Moreover, the shell fragmentation data reveal Subbotina to be the more dissolution-susceptible taxon. The upward decrease in abundance of Morozovella species and the concomitant increase in test size of Morozovella velascoensis are not controlled by dissolution. These changes could be attributed to the species' response to low nutrient supply in the surface waters and to concomitant changes in the physical and chemical properties of the seawater, including increased surface stratification and salinity. Comparison of the planktonic foraminiferal changes at Shatsky Rise to those from other PETM records (Sites 865 and 690) highlights significant similarities, such as the decline of Subbotina at the onset of the event, and discrepancies, including the difference in abundance of the excursion taxa. The observed planktonic foraminifera species response suggests a warm-oligotrophic scenario with a high degree of complexity in the ocean structure.
Resumo:
A rock salt-lamprophyre dyke contact zone (sub-vertical, NE-SW strike) was investigated for its petrographic, mechanic and physical properties by means of anisotropy of magnetic susceptibility (AMS) and rock magnetic properties, coupled with quantitative microstructural analysis and thermal mathematical modelling. The quantitative microstructural analysis of halite texture and solid inclusions revealed good spatial correlation with AMS and halite fabrics. The fabrics of both lamprophyre and rock salt record the magmatic intrusion, "plastic" flow and regional deformation (characterized by a NW-SE trending steep foliation). AMS and microstructural analysis revealed two deformation fabrics in the rock salt: (1) the deformation fabrics in rock salt on the NW side of the dyke are associated with high temperature and high fluid activity attributed to the dyke emplacement; (2) On the opposite side of the dyke, the emplacement-related fabric is reworked by localized tectonic deformation. The paleomagnetic results suggest significant rotation of the whole dyke, probably during the diapir ascent and/or the regional Tertiary to Quaternary deformation.
Resumo:
In this work we study the optimization of laser-fired contact (LFC) processing parameters, namely laser power and number of pulses, based on the electrical resistance measurement of an aluminum single LFC point. LFC process has been made through four passivation layers that are typically used in c-Si and mc-Si solar cell fabrication: thermally grown silicon oxide (SiO2), deposited phosphorus-doped amorphous silicon carbide (a-SiCx/H(n)), aluminum oxide (Al2O3) and silicon nitride (SiNx/H) films. Values for the LFC resistance normalized by the laser spot area in the range of 0.65–3 mΩ cm2 have been obtained
Resumo:
We report on the fabrication details of TES based on Mo/Au bilayers. The Mo layer is deposited by radio frequency (RF) sputtering and capped with a sputter deposited thin Au protection layer. Afterwards, a second Au layer of suitable (lower) resistivity is deposited ex‐situ by e‐beam evaporation, until completion of the total desired Au thickness. The deposition was performed at room temperature (RT) on LPCVD Si3 N4 membranes. Such a deposition procedure is very reproducible and allow controlling the critical temperature (Tc) and normal electrical resistance (RN ) of the Mo/Au bilayer. The process is optimized to achieve low stress bilayers, thus avoiding the undesirable curvature of the membranes. Bilayers are patterned using photolithographic techniques and wet etching procedures. Mo superconducting paths are used to contact the Mo/Au bilayers, thus ensuring good electrical conductivity and thermal isolation. The entire fabrication process let to stable and reproducible sensors with required and tunable functional properties
Resumo:
AlGaN/GaN high electron mobility transistors (HEMT) are key devices for the next generation of high-power, high-frequency and high-temperature electronics applications. Although significant progress has been recently achieved [1], stability and reliability are still some of the main issues under investigation, particularly at high temperatures [2-3]. Taking into account that the gate contact metallization is one of the weakest points in AlGaN/GaN HEMTs, the reliability of Ni, Mo, Pt and refractory metal gates is crucial [4-6]. This work has been focused on the thermal stress and reliability assessment of AlGaN/GaN HEMTs. After an unbiased storage at 350 o C for 2000 hours, devices with Ni/Au gates exhibited detrimental IDS-VDS degradation in pulsed mode. In contrast, devices with Mo/Au gates showed no degradation after similar storage conditions. Further capacitance-voltage characterization as a function of temperature and frequency revealed two distinct trap-related effects in both kinds of devices. At low frequency (< 1MHz), increased capacitance near the threshold voltage was present at high temperatures and more pronounced for the Ni/Au gate HEMT and as the frequency is lower. Such an anomalous “bump” has been previously related to H-related surface polar charges [7]. This anomalous behavior in the C-V characteristics was also observed in Mo/Au gate HEMTs after 1000 h at a calculated channel temperatures of around from 250 o C (T2) up to 320 ºC (T4), under a DC bias (VDS= 25 V, IDS= 420 mA/mm) (DC-life test). The devices showed a higher “bump” as the channel temperature is higher (Fig. 1). At 1 MHz, the higher C-V curve slope of the Ni/Au gated HEMTs indicated higher trap density than Mo/Au metallization (Fig. 2). These results highlight that temperature is an acceleration factor in the device degradation, in good agreement with [3]. Interface state density analysis is being performed in order to estimate the trap density and activation energy.