947 resultados para Combat engineer vehicles
Resumo:
Under the European Union Renewable Energy Directive each Member State is mandated to ensure that 10% of transport energy (excluding aviation and marine transport) comes from renewable sources by 2020. The Irish Government intends to achieve this target with a number of policies including ensuring that 10% of all vehicles in the transport fleet are powered by electricity by 2020. This paper investigates the impact of the 10% electric vehicle target in Ireland in 2020 using a dynamic programming based long term generation expansion planning model. The model developed optimizes power dispatch using hourly electricity demand curves up to 2020, while incorporating generator characteristics and certain operational requirements such as energy not served and loss of load probability while satisfying constraints on environmental emissions, fuel availability and generator operational and maintenance costs. Two distinct scenarios are analysed based on a peak and off-peak charging regimes in order to simulate the effects of the electric vehicles charging in 2020. The importance and influence of the charging regimes on the amount of energy used and tailgate emissions displaced is then determined.
Resumo:
One of the main purposes of building a battery model is for monitoring and control during battery charging/discharging as well as for estimating key factors of batteries such as the state of charge for electric vehicles. However, the model based on the electrochemical reactions within the batteries is highly complex and difficult to compute using conventional approaches. Radial basis function (RBF) neural networks have been widely used to model complex systems for estimation and control purpose, while the optimization of both the linear and non-linear parameters in the RBF model remains a key issue. A recently proposed meta-heuristic algorithm named Teaching-Learning-Based Optimization (TLBO) is free of presetting algorithm parameters and performs well in non-linear optimization. In this paper, a novel self-learning TLBO based RBF model is proposed for modelling electric vehicle batteries using RBF neural networks. The modelling approach has been applied to two battery testing data sets and compared with some other RBF based battery models, the training and validation results confirm the efficacy of the proposed method.
Resumo:
The introduction of the Tesla in 2008 has demonstrated to the public of the potential of electric vehicles in terms of reducing fuel consumption and green-house gas from the transport sector. It has brought electric vehicles back into the spotlight worldwide at a moment when fossil fuel prices were reaching unexpected high due to increased demand and strong economic growth. The energy storage capabilities from of fleets of electric vehicles as well as the potentially random discharging and charging offers challenges to the grid in terms of operation and control. Optimal scheduling strategies are key to integrating large numbers of electric vehicles and the smart grid. In this paper, state-of-the-art optimization methods are reviewed on scheduling strategies for the grid integration with electric vehicles. The paper starts with a concise introduction to analytical charging strategies, followed by a review of a number of classical numerical optimization methods, including linear programming, non-linear programming, dynamic programming as well as some other means such as queuing theory. Meta-heuristic techniques are then discussed to deal with the complex, high-dimensional and multi-objective scheduling problem associated with stochastic charging and discharging of electric vehicles. Finally, future research directions are suggested.
Resumo:
This paper proposes a new methodology for solving the unmanned multi-vehicle formation control problem. It employs a unique “extension-decomposition-aggregation” scheme to transform the overall complex formation control problem to a group of sub-problems which work via boundary interactions. The H∞ robust control strategy is applied to design the decentralised formation controllers to reject the interactions and work jointly to maintain the stability of the overall formation. Simulation studies have been performed to verify its performance and effectiveness.
Resumo:
This paper employs a unique decentralised cooperative control method to realise a formation-based collision avoidance strategy for a group of autonomous vehicles. In this approach, the vehicles' role in the formation and their alert and danger areas are first defined, and the formation-based intra-group and external collision avoidance methods are then proposed to translate the collision avoidance problem into the formation stability problem. The extension–decomposition–aggregation formation control method is next employed to stabilise the original and modified formations, whilst manoeuvring, and subsequently solve their collision avoidance problem indirectly. Simulation study verifies the feasibility and effectiveness of the intra-group and external collision avoidance strategy. It is demonstrated that both formation control and collision avoidance problems can be simultaneously solved if the stability of the expanded formation including external obstacles can be satisfied.
Resumo:
With the increasing utilization of electric vehicles (EVs), transportation systems and electrical power systems are becoming increasingly coupled. However, the interaction between these two kinds of systems are not well captured, especially from the perspective of transportation systems. This paper studies the reliability of integrated transportation and electrical power system (ITES). A bidirectional EV charging control strategy is first demonstrated to model the interaction between the two systems. Thereafter, a simplified transportation system model is developed, whose high efficiency makes the reliability assessment of the ITES realizable with an acceptable accuracy. Novel transportation system reliability indices are then defined from the view point of EV’s driver. Based on the charging control model and the transportation simulation method, a daily periodic quasi sequential reliability assessment method is proposed for the ITES system. Case studies based on RBTS system demonstrate that bidirectional charging controls of EVs will benefit the reliability of power systems, while decrease the reliability of EVs travelling. Also, the optimal control strategy can be obtained based on the proposed method. Finally, case studies are performed based on a large scale test system to verify the practicability of the proposed method.
Resumo:
Purpose The aim of this study is to improve the drug release properties of antimicrobial agents from hydrophobic biomaterials using using an ion pairing strategy. In so doing antimicrobial agents may be eluted and maintained over a sufficient time period thereby preventing bacterial colonisation and subsequent biofilm formation on medical devices. Methods The model antimicrobial agent was chlorhexidine and the selected fatty acid counter ions were capric acid, myristic acid and stearic acid. The polymethyl methacrylate films were loaded with 2% of fatty acid:antimicrobial agent at the following molar ratios; 0.5:1M, 1:1M and 2:1M and thermally polymerized using azobisisobutyronitrile initiator. Drug release experiments were subsequently performed over a 3-month period and the mass of drug released under sink conditions (pH 7.0, 37oC) quantified using a validated HPLC-UV method. Results In all platforms, a burst of chlorhexidine release was observed over the initial 24-hour period. Similar release kinetics were observed between the formulations during the initial 28 days. However, as time progressed, the chlorhexidine baseline plateaued after 56 days whereas formulations containing the counterions appeared to continuously elute linearly with time. As can be observed in figure 1, the rank order of total chlorhexidine release in the presence of 0.5M fatty acid was myristic acid (40%) > capric acid (35%) > stearic acid (30%)> chlorhexidine baseline (15%). Conclusion The incorporation of fatty acids within the formulation significantly improved chlorhexidine solubility within both the monomer and the polymer and enhanced the drug release kinetics over the period of study. This is attributed to the greater diffusivity of chlorhexidine through PMMA in the presence of fatty acids. In th absence of fatty acids, chlorhexidine release was facilitated by dissolution of surface associated drug particles. This study has illustrated the ability of fatty acids to modulate chlorhexidine release from a model biomaterial through enhanced diffusivity. This strategy may prove advantageous for improved medical devices with enhanced resistance to infection.
Unit commitment considering multiple charging and discharging scenarios of plug-in electric vehicles
Resumo:
Electric vehicles (EVs) and hybrid electric vehicles (HEVs) are rapidly gaining popularity as a means of de-carbonization in the transport sector in tackling sustainable energy supply and environment pollution problems. To build a proper battery model is essential in predicting battery behaviour under various operating conditions for avoiding unsafe battery operations and developing proper controlling algorithms and maintenance strategies. This paper presents a comprehensive review of battery modelling methods. In particular, the mechanism and characteristics of Li-ion batteries are presented, and different modelling methods are discussed. Considering that equivalent electric circuit models (EECMs) are the most widely used, a detailed analysis of the modelling procedure is presented.
Resumo:
Indirect bridge monitoring methods, using the responses measured from vehicles passing over bridges, are under development for about a decade. A major advantage of these methods is that they use sensors mounted on the vehicle, no sensors or data acquisition system needs to be installed on the bridge. Most of the proposed methods are based on the identification of dynamic characteristics of the bridge from responses measured on the vehicle, such as natural frequency, mode shapes, and damping. In addition, some of the methods seek to directly detect bridge damage based on the interaction between the vehicle and bridge. This paper presents a critical review of indirect methods for bridge monitoring and provides discussion and recommendations on the challenges to be overcome for successful implementation in practice.
Resumo:
Bridge structures are subject to continuous degradation due to the environment, ageing and excess loading. Monitoring of bridges is a key part of any maintenance strategy as it can give early warning if a bridge is becoming unsafe. This paper will theoretically assess the ability of a vehicle fitted with accelerometers on its axles to detect changes in damping of bridges, which may be the result of damage. Two vehicle models are used in this investigation. The first is a two degree-of-freedom quarter-car and the second is a four degree-of-freedom halfcar. The bridge is modelled as a simply supported beam and the interaction between the vehicle and the bridge is a coupled dynamic interaction algorithm. Both smooth and rough road profiles are used in the simulation and results indicate that changes in bridge damping can be detected by the vehicle models for a range of vehicle velocities and bridge spans.
Resumo:
This paper describes a ‘drive-by’ method of bridge inspection using an instrumented vehicle. Accelerometers on the vehicle are proposed as a means of detecting damage on the bridge in the time it takes for the vehicle to cross the bridge at full highway speed. For a perfectly smooth road profile, the method is shown to be feasible. Changes in bridge damping, which is an indicator of damage, are clearly visible in the acceleration signal of a quarter-car vehicle on a smooth road surface modelled using MatLab. When road profile is considered, the influence of changes in bridge damping on the vehicle acceleration signal is much less clear. However, when a half-car model is used on a road with a rough profile, it is again possible to detect changes in bridge damping, provided the vehicle has two identical axles.
Resumo:
A conventional way to identify bridge frequencies is utilizing vibration data measured directly from the bridge. A drawback with this approach is that the deployment and maintenance of the vibration sensors are generally costly and time-consuming. One way to cope with the drawback is an indirect approach utilizing vehicle vibrations while the vehicle passes over the bridge. In the indirect approach, however, the vehicle vibration includes the effect of road surface roughness, which makes it difficult to extract the bridge modal properties. One solution may be subtracting signals of two trailers towed by a vehicle to reduce the effect of road surface roughness. A simplified vehicle-bridge interaction model is used in the numerical simulation; the vehicle - trailer and bridge system are modeled as a coupled model. In addition, a laboratory experiment is carried out to verify results of the simulation and examine feasibility of the damage detection by the indirect method.