887 resultados para Circulating Tumour Cells
Resumo:
Objective: An imbalance between bone formation and bone resorption is thought to underlie the pathogenesis of reduced bone mass in osteoporosis. Bone resorption is carried out by osteoclasts, which are formed from marrow-derived cells that circulate in the monocyte fraction. Ihe aim of this study was to determine the role of osteoclast formation in the pathogenesis of bone loss in osteoporosis. Methods: The proportion of circulating osteoclast precursors and their relative sensitivity to the osteoclastogenic effects of M-CSF, 1,25(OH)2D3 and RANKL were assessed in primary osteoporosis patients and normal controls. Results: Although there was no difference in the number of circulating osteoclast precursors in osteoporosis patients and normal controls, osteoclasts formed from osteoporosis patients exhibited substantially increased resorptive activity relative to normal controls. Although no increased sensitivity to the osteoclastogenic effects of 1,25(OH)2D3 or M-CSF was noted, increased bone resorption was found in osteoporosis peripheral blood mononuclear cell (PBMC) cultures to which these factors were added. Conclusion: Our findings suggest that osteoclast functional activity rather than formation is increased in primary involutional osteoporosis and that dexamethasone acts to increase osteoclast formation.
Resumo:
To identify ‘melanoma-specific’ microRNAs (miRNAs) we used an unbiased microRNA profiling approach to comprehensively study cutaneous melanoma in relation to other solid malignancies, which revealed 233 differentially expressed (≥ 2 fold, p < 0.05) miRNAs. Among the top 20 most significantly different miRNAs was hsa-miR-514a-3p. miR-514a is a member of a cluster of miRNAs (miR-506-514) involved in initiating melanocyte transformation and promotion of melanoma growth. We found miR-514a was expressed in 38/55 (69%) melanoma cell lines but in only 1/34 (3%) other solid cancers. To identify miR-514a regulated targets we conducted a miR-514a-mRNA ‘pull-down’ experiment, which revealed hundreds of genes, including: CTNNB1, CDK2, MC1R, and NF1, previously associated with melanoma. NF1 was selected for functional validation because of its recent implication inacquired resistance to BRAFV600E-targeted therapy. Luciferase-reporter assays confirmed NF1 as a direct target of miR-514a and over-expression of miR-514a in melanoma cell lines inhibited NF1 expression, which correlated with increased survival of BRAFV600E cells treated with PLX4032. These data provide another mechanism for the dysregulation of the MAPK pathway which may contribute to the profound resistance associated with current RAF-targeted therapies.
Resumo:
Paracrine regulation between the components of the tumour microenvironment cancer cells, activated fibroblasts, immune and endothelial cells is under intense investigation. The signals between the different cell types are mediated by soluble factors, such as growth factors, proinflammatory cytokines and proteolytic enzymes. Nemosis is an experimental in vitro model of fibroblast activation, leading to increased production of such mediators. Nemotic activation of fibroblasts occurs as they are forced to cluster thereby forming a multicellular spheroid. The aim of the present studies was to elucidate the mechanisms underlying the nemotic response of cancer-associated fibroblasts (CAF) and the role of nemosis in paracrine regulation between activated fibroblasts and benign and malignant epithelial cells. The results presented in this thesis demonstrate that the nemotic response of CAFs and normal fibroblasts differs, and inter-individual variations exist between fibroblast populations. In co-culture experiments, fibroblasts increased colony formation of squamous cell carcinoma (SCC) cells, and CAFs further augmented this, highlighting the tumour-evolving properties of CAFs. Furthermore, fibroblast monolayers in those co-cultures started to cluster spontaneously. This kind of spontaneous nemosis response might take place also in vivo, although more direct evidence of this still needs to be obtained. The HaCaT skin carcinoma progression model was used to study the effects of benign and malignant keratinocytes on fibroblast nemosis. Benign HaCaT cells inhibited fibroblast nemosis, observed as inhibition of cyclooxygenase 2 (COX-2) induction in nemotic spheroids. In contrast, malignant HaCaTs further augmented the nemotic response by increasing expression of COX-2 and the growth factors hepatocyte growth factor / scatter factor (HGF/SF) and vascular endothelial growth factor (VEGF), as well as causing a myofibroblastic differentiation of nemotic fibroblasts into fibroblasts resembling CAFs. On the other side of this reciprocal signalling, factors secreted into conditioned medium by the nemotic fibroblasts promoted proliferation and motility of the HaCaT cell lines. Notably, the nemotic fibroblast medium increased the expression of p63, a transcription factor linked to carcinogenesis, also in the highly metastatic HaCaT cells. These results emphasize the paracrine role of factors secreted by activated fibroblasts in driving tumour progression. We also investigated the epithelial-mesenchymal transition (EMT) of the HaCaT clones in response to transforming growth factor β (TGF-β), which is a well-characterized inducer of EMT. TGF-β caused growth arrest and loss of epithelial cell junctions in the HaCaT derivatives, but mesenchymal markers were not induced, suggesting a partial, but not complete EMT response. Inflammation induced by COX-2 has been proposed to be a key mechanism in EMT of benign cells. Corroborating this notion, COX-2 was induced only in benign, not in malignant HaCaT derivatives. Furthermore, in cells in which TGF-β caused COX-2 induction, migration was clearly augmented. The concept of treating cancer is changing from targeting solely the cancer cells to targeting the whole microenvironment. The results of this work emphasise the role of activated fibroblasts in cancer progression and that CAFs should also be taken into consideration in the treatment of cancer. The results from these studies suggests that nemosis could be used as a diagnostic tool to distinguish in vitro activated fibroblasts from tumour stroma and also in studying the paracrine signalling that is mediated to other cell types via soluble factors.
Resumo:
Gas discharge plasmas formed at atmospheric pressure and near room temperature have recently been shown as a promising tool for cancer treatment. The mechanism of the plasma action is attributed to generation of reactive oxygen and nitrogen species, electric fields, charges, and photons. The relative importance of different modes of action of atmospheric-pressure plasmas depends on the process parameters and specific treatment objects. Hence, an in-depth understanding of biological mechanisms that underpin plasma-induced death in cancer cells is required to optimise plasma processing conditions. Here, the intracellular factors involved in the observed anti-cancer activity in melanoma Mel007 cells are studied, focusing on the effect of the plasma treatment dose on the expression of tumour suppressor protein TP73. Over-expression of TP73 causes cell growth arrest and/or apoptosis, and hence can potentially be targeted to enhance killing efficacy and selectivity of the plasma treatment. It is shown that the plasma treatment induces dose-dependent up-regulation of TP73 gene expression, resulting in significantly elevated levels of TP73 RNA and protein in plasma-treated melanoma cells. Silencing of TP73 expression by means of RNA interference inhibited the anticancer effects of the plasma, similar to the effect of caspase inhibitor z-VAD or ROS scavenger N-acetyl cysteine. These results confirm the role of TP73 protein in dose-dependent regulation of anticancer activity of atmospheric-pressure plasmas.
Resumo:
The matrix of blood is a liquid plasma that transports molecules and blood cells within vessels lined by endothelial cells. High-mobility group B1 (HMGB1) is a protein expressed in blood cells. Under normal circumstances, HMGB1 is virtually absent from plasma, but during inflammation or trauma its level in plasma is increased. In resting and quiescent cells, HMGB1 is usually localized in the intracellular compartment, with the exception of motile cells that express HMGB1 on their outer surface to mediate cell migration. During cell transformation or immune cell activation HMGB1 can be actively secreted outside of the cell. Further, when a cell is damaged, HMGB1 can passively leak into extracellular environment. Extracellular HMGB1 can then participate in regulation of the immune response and under some conditions it can mediate lethality in systemic inflammatory response. The aim of this study was to evaluate the expression and functions of HMGB1 in cells of the vascular system and to investigate the prognostic value of circulating HMGB1 in severe sepsis and septic shock. HMGB1 was detected in platelets, leukocytes, and endothelial cells. HMGB1 was released from platelets and leukocytes, and it was found to mediate their adhesive and migratory functions. During severe infections the plasma levels of HMGB1 were elevated; however, no direct correlation with lethality was found. Further, the analysis of proinflammatory mechanisms suggested that HMGB1 forms complexes with other molecules to activate the immune system. In conclusion, HMGB1 is expressed in the cells of the vascular system, and it participates in inflammatory mechanisms by activating platelets and leukocytes and by mediating monocyte migration.
Resumo:
CD1d-restricted natural killer T (NKT) cells expressing invariant Valpha14Jalpha18 T cell receptor alpha-chains are abundant in murine liver and are implicated in the control of malignancy, infection and autoimmunity. Invariant NKT cells have potent anti-metastatic effects in mice and phase I clinical trials involving their homologues in humans are ongoing. However, invariant NKT cells are less abundant in human liver ( approximately 0.5% of hepatic T cells) than in murine liver (up to 50%) and it is not known if other hepatic T cells are CD1-restricted. We have examined expression of CD1a, CD1b, CD1c and CD1d mRNA and protein in human liver and evaluated the reactivity of mononuclear cells (MNC) from histologically normal and tumour-bearing human liver specimens against these CD1 isoforms. Messenger RNA for all CD1 isotypes was detectable in all liver samples. CD1c and CD1d were expressed at the protein level by hepatic MNC. CD1d, only, was detectable at the cell surface, but CD1c and CD1d were found at an intracellular location in significant numbers of liver MNC. CD1b was not expressed by MNC from healthy livers but was detectable within MNC in all tumour samples tested. Hepatic T cells exhibited reactivity against C1R cells expressing transfected CD1c and CD1d, but neither CD1a nor CD1b. These cells secreted interferon-gamma (IFN-gamma) but not interleukin-4 (IL-4) upon stimulation. In contrast, similar numbers of peripheral T cells released 13- and 16-fold less IFN-gamma in response to CD1c and CD1d, respectively. CD1c and CD1d expression and T cell reactivity were not altered in tumour-bearing liver specimens compared to histologically normal livers. These data suggest that, in addition to invariant CD1d-restricted NKT cells, autoreactive T cells that recognise CD1c and CD1d and release inflammatory cytokines are abundant in human liver.
Resumo:
Background Risk-stratification of diffuse large B-cell lymphoma (DLBCL) requires identification of patients with disease that is not cured despite initial R-CHOP. Although the prognostic importance of the tumour microenvironment (TME) is established, the optimal strategy to quantify it is unknown. Methods The relationship between immune-effector and inhibitory (checkpoint) genes was assessed by NanoString™ in 252 paraffin-embedded DLBCL tissues. A model to quantify net anti-tumoural immunity as an outcome predictor was tested in 158 R-CHOP treated patients, and validated in tissue/blood from two independent R-CHOP treated cohorts of 233 and 140 patients respectively. Findings T and NK-cell immune-effector molecule expression correlated with tumour associated macrophage and PD-1/PD-L1 axis markers consistent with malignant B-cells triggering a dynamic checkpoint response to adapt to and evade immune-surveillance. A tree-based survival model was performed to test if immune-effector to checkpoint ratios were prognostic. The CD4*CD8:(CD163/CD68)*PD-L1 ratio was better able to stratify overall survival than any single or combination of immune markers, distinguishing groups with disparate 4-year survivals (92% versus 47%). The immune ratio was independent of and added to the revised international prognostic index (R-IPI) and cell-of-origin (COO). Tissue findings were validated in 233 DLBCL R-CHOP treated patients. Furthermore, within the blood of 140 R-CHOP treated patients immune-effector:checkpoint ratios were associated with differential interim-PET/CT+ve/-ve expression.
Resumo:
The incidence of gastric cancer in the last decades has declined rapidly in the industrialised countries. Worldwide, however, gastric cancer is still the second most common cause of cancer death. Although surgery is currently the most effective treatment, the rapid progress in adjuvant chemotherapy and radiation therapy requires a re-evaluation of prognosis assessment. The TNM staging system of the UICC is ubiquitously used; it groups patients by decreasing survival times from stage I to stage IV based on the spread of disease, i.e. depth of tumour penetration (T), extent of spread to lymph nodes (N), and the presence or absence of distant (M) metastases. This is by far the most consistent prognostic classification system today. However, even within the stage groups there are patients that follow a varying course of disease. Our knowledge of the molecular differences between tumours of the same stage and morphology has been accumulating over the years and methods for a more accurate assessment of the phenotype of neoplasias are of value when evaluating the prognosis of individual patients with gastric cancer. In this study, the immunohistochemical expression of tumour markers involved in different phases in tumourigenesis was examined. The aim was to find new markers which could provide prognostic information in addition to what is provided by the TNM variables. A total of 337 specimens from the primary tumour of patients who underwent surgery for gastric cancer were collected and the immunohistochemical expression of seven different biomarkers was analysed. DNA ploidy and S-phase fraction (SPF) was assessed by flow cytometry. Finally, all biomarkers and clinicopathological prognostic factors were combined and evaluated by a multivariate Cox regression model to elucidate which specific factors provide independent prognostic information. By univariate survival analysis the following variables were significant prognostic factors: epithelial and stromal syndecan-1 expression, stromal tenascin-C expression, expression of tumour-associated trypsin inhibitor (TATI) in cancer cells, nuclear p53 expression, nuclear p21 expression, DNA ploidy, and SPF. By multivariate survival analysis adjusted for all available clinicopathological and biomolecular variables, p53 expression, p21 expression, and DNA ploidy emerged as independent prognostic biomarkers, together with penetration depth of the tumour, presence of nodal metastases, surgical cure of the cancer, and age of the patient at the time of diagnosis.
Resumo:
The Children’s Cancer Institute in Sydney recently launched an ambitious program. From early next year, scientists will analyse the unique cancer cells of 12 children diagnosed with the most aggressive forms of the disease to find the best treatment for each child. By 2020, they aim to have these individualised treatment options available to all children diagnosed with cancers that have a less than 30% survival rate. This way of tailoring treatment to each person is known as personalised medicine, and advances in DNA sequencing have paved the way for a new era in cancer management.
Resumo:
Kallikrein-related peptidase 4 (KLK4) is a protease with elevated production in prostate cancer versus benign tissue. KLK4 expression is associated with prostate cancer risk, and its activity favours tumour progression through increasing cell motility and growth. Importantly, over-production of KLK4 in prostate glandular cells precedes tumour formation, positioning the enzyme to play a role in early remodelling of the tumour microenvironment, a process essential for tumour growth. We sought to identify the proteins and downstream signalling pathways targeted by KLK4 activity, to define its role in tumour microenvironment remodelling and evaluate the efficacy of KLK4 inhibition as a cancer therapy.
Resumo:
Background Inflammatory myofibroblastic tumours (IMTs) are rare sarcomas that were first described in the lung. They are composed of myofibroblastic mesenchymal spindle cells accompanied by an inflammatory infiltrate of plasma cells. Complete resection is the treatment of choice. There is currently no standard treatment for inoperable or recurrent disease. Expression of ALK protein triggered by ALK gene rearrangement at chromosome 2p23 has been found in 36%-60% of IMTs. Case report We report a rapid early response to crizotinib as neoadjuvant therapy, enabling surgical excision of a large ALK-translocated IMT, which resulted in complete disease clearance. To the best of our knowledge, this is the first case in the literature of a patient with IMT in whom crizotinib was used successfully in the neoadjuvant or curative setting.
Resumo:
SASH1 (SAM and SH3 domain-containing protein 1) is a recently identified gene with tumour suppressor properties with a role in the induction of apoptosis. Previous work has shown that 90% of lung cell lines have a decrease in SASH1 mRNA levels, however little characterisation of SASH1 function in lung cancer has been undertaken.
Resumo:
Purpose: Testis specific heat-shock protein 70-2 (HSP70-2), a member of HSP70 chaperone family, is essential for the growth of spermatocytes and cancer cells. We investigated the association of HSP70-2 expression with clinical behaviour and progression of urothelial carcinoma of bladder. Experimental design: We assessed the HSP70-2 expression by RT-PCR and HSP70-2 protein expression by immunofluorescence, flow cytometry, immunohistochemistry and Western blotting in urothelial carcinoma patient specimens and HTB-1, UMUC-3, HTB-9, HTB-2 and normal human urothelial cell lines. Further, to investigate the role of HSP70-2 in bladder tumour development, HSP70-2 was silenced in the high-grade invasive HTB-1 and UMUC-3 cells. The malignant properties of urothelial carcinoma cells were examined using colony formation, migration assay, invasion assay in vitro and tumour growth in vivo. Results: Our RT-PCR analysis and immunohistochemistry analysis revealed that HSP70-2 was expressed in both moderate to well-differentiated and high-grade invasive urothelial carcinoma cell lines studied and not in normal human urothelial cells. In consistence with these results, HSP70-2 expression was also observed in superficially invasive (70%) and muscle-invasive (90%) patient's tumours. Furthermore, HSP70-2 knockdown significantly suppressed cellular motility and invasion ability. An in vivo xenograft study showed that inhibition of HSP70-2 significantly suppressed tumour growth. Conclusions: In conclusion, our data suggest that the HSP70-2 expression is associated with early spread and progression of urothelial carcinoma of bladder cancer and that HSP70-2 can be the potential therapeutic target for bladder urothelial carcinoma. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Histone deacetylase inhibitors (HDIs) have attracted considerable attention as potential drug molecules in tumour biology. In order to optimise chemotherapy, it is important to understand the mechanisms of regulation of histone deacetylase (HDAC) enzymes and modifications brought by various HDIs. In the present study, we have employed Fourier transform infrared microspectroscopy (FT-IRMS) to evaluate modifications in cellular macromolecules subsequent to treatment with various HDIs. In addition to CH3 (methyl) stretching bands at 2872 and 2960 cm1, which arises due to acetylation, we also found major changes in bands at 2851 and 2922 cm1, which originates from stretching vibrations of CH2 (methylene) groups, in valproic acid treated cells. We further demonstrate that the changes in CH2 stretching are concentration-dependent and also induced by several other HDIs. Recently, HDIs have been shown to induce propionylation besides acetylation [1]. Since propionylation involves CH2 groups, we hypothesized that CH2 vibrational frequency changes seen in HDI treated cells could arise due to propionylation. As verification, pre-treatment of cells with propionyl CoA synthetase inhibitor resulted in loss of CH2 vibrational changes in histones, purified from valproic acid treated cells. This was further proved by western blot using propionyl-lysine specific antibody. Thus we demonstrate for the first time that propionylation could be monitored by studying CH2 stretching using IR spectroscopy and further provide a platform for monitoring HDI induced multiple changes in cells. (C) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Resumo:
Owing to the reduced co-relationship between conventional flat Petri dish culture (two-dimensional) and the tumour microenvironment, there has been a shift towards three-dimensional culture systems that show an improved analogy to the same. In this work, an extracellular matrix (ECM)-mimicking three-dimensional scaffold based on chitosan and gelatin was fabricated and explored for its potential as a tumour model for lung cancer. It was demonstrated that the chitosan-gelatin (CG) scaffolds supported the formation of tumoroids that were similar to tumours grown in vivo for factors involved in tumour-cell-ECM interaction, invasion and metastasis, and response to anti-cancer drugs. On the other hand, the two-dimensional Petri dish surfaces did not demonstrate gene-expression profiles similar to tumours grown in vivo. Further, the three-dimensional CG scaffolds supported the formation of tumoroids, using other types of cancer cells such as breast, cervix and bone, indicating a possible wider potential for in vitro tumoroid generation. Overall, the results demonstrated that CG scaffolds can be an improved in vitro tool to study cancer progression and drug screening for solid tumours.