901 resultados para Chitosan scaffold


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Language is widely recognized as an inescapable mediating tool for professional learning, and with this text we want to contribute to a better understanding of the particular role that guided writing can play in in-service professional reflective learning. We analysed one pre-school teacher’s written portfolio, the construction of which was guided to scaffold deep thinking about (and the transference of theory into) practice during participation in an in-service program about language education. Our case study shows that the writing process sustained robust learning about professional knowing, doing and learning itself: The teacher elaborated an integrative ethical understanding of the discussed theory, fully experienced newly informed practices and assessed her own learning by using theory to confront her previous knowledge and practices. Throughout the portfolio, the learning stance revealed by her voice varied accordingly. The study illustrates the potential of guided writing to scaffold reflective learning in in-service contexts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitosan is a natural polymer obtained by deacetylation of chitin. After cellulose chitin is the second most abundant polysaccharide in nature. It is biologically safe, non-toxic, biocompatible and biodegradable polysaccharide. Chitosan loaded with zinc oxide nanoparticles have gained more attention bio sorbent because of their better stability, low toxicity, simple and mild preparation method and high sorption capacity. Chitosan loaded with zinc oxide nanoparticles have been prepared of chitosan. The physicochemical properties of nanoparticles were characterized by Fourier Transform Infrared (FTIR), Scanning Electron Microscope (SEM) Analysis. Its sorption capacity for lead and cadmium ions studied. Factors such as initial concentration of lead ions, cadmium ions sorbent amount, contact time, pH and temperature were investigated. It is found that chitosan loaded with zinc oxide nanoparticles could sorb lead and cadmium ions effectively, this sorption rate was affected significantly by initial concentration of lead and cadmium ions, sorbent amount, contact time, pH of solution. The maximum of percentage of lead sorption was 98 % with initial concentration 3 mg/l and sorbent amount 0.05 g, pH 11 in 45 min and cadmiumwas90 %with initial concentration 3mg/l and sorbent amount 0.05 g, pH 11 in45 min. Consequently chitosan loaded with zinc oxide nanoparticles demonstrated greater fixation ability for lead ions than cadmium ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of nanoparticles in food packaging has been proposed on the basis that it could improve protection of foods by, for example, reducing permeation of gases, minimizing odor loss, and increasing mechanical strength and thermal stability. Consequently, the impacts of such nanoparticles on organisms and on the environment need to be investigated to ensure their safe use. In an earlier study, Moura and others (2008a) described the effect of addition of chitosan (CS) and poly(methacrylic acid) (PMAA) nanoparticles on the mechanical properties, water vapor, and oxygen permeability of hydroxypropyl methylcellulose films used in food packaging. Here, the genotoxicity of different polymeric CS/PMAA nanoparticles (size 60, 82, and 111 nm) was evaluated at different concentration levels, using the Allium cepa chromosome damage test as well as cytogenetic tests employing human lymphocyte cultures. Test substrates were exposed to solutions containing nanoparticles at polymer mass concentrations of 1.8, 18, and 180 mg/L. Results showed no evidence of DNA damage caused by the nanoparticles (no significant numerical or structural changes were observed), however the 82 and 111 nm nanoparticles reduced mitotic index values at the highest concentration tested (180 mg/L), indicating that the nanoparticles were toxic to the cells used at this concentration. In the case of the 60 nm CS/PMAA nanoparticles, no significant changes in the mitotic index were observed at the concentration levels tested, indicating that these particles were not toxic. The techniques used show promising potential for application in tests of nanoparticle safety envisaging the future use of these materials in food packaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agrochemicals are amongst the contaminants most widely encountered in surface and subterranean hydrological systems. They comprise a variety of molecules, with properties that confer differing degrees of persistence and mobility in the environment, as well as different toxic, carcinogenic, mutagenic and teratogenic potentials, which can affect non-target organisms including man. In this work, alginate/chitosan nanoparticles were prepared as a carrier system for the herbicide paraquat. The preparation and physicochemical characterization of the nanoparticles was followed by evaluation of zeta potential, pH, size and polydispersion. The techniques employed included transmission electron microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy. The formulation presented a size distribution of 635 +/- 12 nm, polydispersion of 0.518, zeta potential of -22.8 +/- 2.3 mV and association efficiency of 74.2%. There were significant differences between the release profiles of free paraquat and the herbicide associated with the alginate/chitosan nanoparticles. Tests showed that soil sorption of paraquat, either free or associated with the nanoparticles. was dependent on the quantity of organic matter present. The results presented in this work show that association of paraquat with alginate/chitosan nanoparticles alters the release profile of the herbicide, as well as its interaction with the soil, indicating that this system could be an effective means of reducing negative impacts caused by paraquat. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DnaD is a primosomal protein that remodels supercoiled plasmids. It binds to supercoiled forms and converts them to open forms without nicking. During this remodeling process, all the writhe is converted to twist and the plasmids are held around the periphery of large scaffolds made up of DnaD molecules. This DNA-remodeling function is the sum of a scaffold-forming activity on the N-terminal domain and a DNA-dependent oligomerization activity on the C-terminal domain. We have determined the crystal structure of the scaffold-forming N-terminal domain, which reveals a winged-helix architecture, with additional structural elements extending from both N- and C-termini. Four monomers form dimers that join into a tetramer. The N-terminal extension mediates dimerization and tetramerization, with extensive interactions and distinct interfaces. The wings and helices of the winged-helix domains remain exposed on the surface of the tetramer. Structure-guided mutagenesis and atomic force microscopy imaging indicate that these elements, together with the C-terminal extension, are involved in scaffold formation. Based upon our data, we propose a model for the DnaD-mediated scaffold formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New and promising treatments for coronary heart disease are enabled by vascular scaffolds made of poly(L-lactic acid) (PLLA), as demonstrated by Abbott Vascular’s bioresorbable vascular scaffold. PLLA is a semicrystalline polymer whose degree of crystallinity and crystalline microstructure depend on the thermal and deformation history during processing. In turn, the semicrystalline morphology determines scaffold strength and biodegradation time. However, spatially-resolved information about the resulting material structure (crystallinity and crystal orientation) is needed to interpret in vivo observations.

The first manufacturing step of the scaffold is tube expansion in a process similar to injection blow molding. Spatial uniformity of the tube microstructure is essential for the consistent production and performance of the final scaffold. For implantation into the artery, solid-state deformation below the glass transition temperature is imposed on a laser-cut subassembly to crimp it into a small diameter. Regions of localized strain during crimping are implicated in deployment behavior.

To examine the semicrystalline microstructure development of the scaffold, we employed complementary techniques of scanning electron and polarized light microscopy, wide-angle X-ray scattering, and X-ray microdiffraction. These techniques enabled us to assess the microstructure at the micro and nano length scale. The results show that the expanded tube is very uniform in the azimuthal and axial directions and that radial variations are more pronounced. The crimping step dramatically changes the microstructure of the subassembly by imposing extreme elongation and compression. Spatial information on the degree and direction of chain orientation from X-ray microdiffraction data gives insight into the mechanism by which the PLLA dissipates the stresses during crimping, without fracture. Finally, analysis of the microstructure after deployment shows that it is inherited from the crimping step and contributes to the scaffold’s successful implantation in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To develop docetaxel (DTX)- and alendronate (ALN)-loaded, chitosan (CS)-conjugated polylactide- co-glycolide (PLGA) nanoparticles (NPs) to increase therapeutic efficacy in osteosarcoma cells. Methods: Drug-loaded PLGA NPs were prepared by nanoprecipitation and chemically conjugated by the carboxylic group of PLGA to the amine-bearing CS polymer. The nanocarrier was characterized by dynamic light scattering, transmission electron microscopy, scanning electron microscopy, and differential scanning calorimetry as well as by in vitro drug release and cell culture studies. Results: NP size was within the tumour targeting range (~200 nm) with an effective positive charge (20 mV), thus increasing cellular uptake efficiency. Morphological analysis revealed clear spherical particles with uniform dispersion. The NPs exhibited identical sustained release kinetics for both DTX and ALN. CS-conjugated PLGA with dual-drug-loaded (DTX and AL) NPs showed typical time-dependent cellular uptake and also displayed superior cytotoxicity in MG-63 cells compared with blank NPs, which were safe and biocompatible. Conclusion: Combined loading of DTX and ALN in NPs increased the therapeutic efficacy of the formulation for osteosarcoma treatment, thus indicating the potential benefit of a combinatorial drug regimen using nanocarriers for effective treatment of osteosarcoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation is related to the studies of functionalized nanoparticles for self-assembly and as controlled drug delivery system. The whole topic is composed of two parts. In the first part, the research was conducted to design and synthesize a new type of ionic peptide-functionalized copolymer conjugates for self-assembly into nanoparticle fibers and 3D scaffolds with the ability of multi-drug loading and governing the release rate of each drug for tissue engineering. The self-assembly study confirmed that such peptide-functionalized amphiphilic copolymers underwent different self-assembly behavior. The bigger nanoparticles were more easily assembled into nanoparticle fibers and 3D scaffolds with larger pore size, while the smaller nanoparticle underwent faster self-assembly to form more compact 3D scaffolds with smaller porosity but more stable structure. Controlled release studies confirmed the ability of governing simultaneous release of different model drugs with independent release rate from a same scaffold. Cytotoxicity tests showed that all synthesized peptides, copolymers and peptide-copolymer conjugates were biocompatible with SW-620 cell lines and NIH3T3 cell lines. This new type of self-assembled scaffolds combined the advantages of peptide nanofibers and versatile controlled release of polymeric nanoparticles to achieve simultaneous multi-drug loading and controlled release of each drug, uniform distribution and flexibility of hydrogel scaffolds. The investigations in second part were first to design and synthesize organic biocide-loaded nanoparticles for low-leaching wood preservation using a cost-effective one-pot method to synthesize amphiphilic chitosan-g-PMMA nanoparticles loading with ~25-28 wt.% of the fungicide tebuconazole with particle size of ~100 nm diameter by FESEM. FESEM analysis confirmed efficient penetration of nanoparticles throughout the treated wooden stake with dimension of 19 × 19 × 455 mm^3. Leaching studies showed that biocide introduced into sapwood via nanoparticles leached only ~9% compared with the amount leached from tebuconazole solution-treated control, while soil jar tests showed that the nanoparticle-treated wood blocks were effectively protected from biological decay tested against G. trabeum, a brown rot fungus. Copper oxide nanoparticles with and without polymer stabilizers were also investigated to use as inorganic wood preservatives to clarify the factor affecting copper leaching from treated wood. Copper oxide nanoparticles with uniform diameters of ~10 nm and ~50 nm were prepared, and the leachates from southern pine sapwood treated with these nanoparticles were analyzed. It was found by TEM and EDS analysis that significant numbers of nanoparticles leached from the treated wood. The 50 nm nanoparticles leached slightly less than a soluble copper salt control, but 10 nm nanoparticles leached substantially more than the control. The effect of polymer stabilizers on nanoparticle leaching was also investigated. Results showed that polymer stabilizers increased leaching. The trends showed that nanoparticle size was a major factor in copper leaching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a previous work (Nicu et al. 2013), the flocculation efficiency of three chitosans differing by molecular weight and charge density were evaluated for their potential use as wet end additives in papermaking. According to the promising results obtained, chitosan (single system) and its combination with bentonite (dual system) were evaluated as retention aids, and their efficiency was compared with poly(diallyl dimethyl ammonium chloride) (PDADMAC) and polyethylenimine (PEI). In single systems, chitosan was clearly more efficient in drainage rate than PDADMAC and PEI, especially those with the lowest molecular weights; however, retention is considerably lower. This drawback can be overcome by using dual systems with anionic bentonite microparticles, with the optimum ratio of polymer:bentonite being 1:4 (wt./wt.). In dual systems, the differences in retention were almost negligible, and the difference in drainage rate was even higher, together with better floc reversibility. The most efficient chitosan in single systems was Ch.MMW, while Ch.LMW was the most efficient in dual systems. The flocculation mechanism of chitosan was a combination of patch formation, charge neutralization, and partial bridge formation, and the predominant mechanism depended on the molecular weight and charge density of the chitosan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free fatty acids (palmitic, stearic and oleic acid) were converted into biodiesel with methanol over composites catalysts consisting in SBA-15 with sulfonic acid groups (SBA-15-SO3H) immobilized in Chitosan (CH), at 60ºC. It was observed that the catalytic activity increased with the amount of SBA-15-SO3H dispersed in CH. It was also observed that the catalytic activity decreased in the series: palmitic acid > stearic acid > oleic. The catalytic stability of [SBA-15-SO3H]3/CH composites was studied. A good stability was observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To evaluate the clinical and MRI outcomes after the implantation of a nanostructured cell free aragonite-based scaffold in patients affected by knee chondral and osteochondral lesions. METHODS: 126 patients (94 men, 32 women; age 32.7±8.8 years) were included according to the following criteria: grade III or IV chondra/osteochondral lesions in the femoral condyles or throclea; 2) no limb axial deviation (i.e. varus or valgus knee > 5°); 3) no signs of knee instability; 4) no concurrent tibial or patellar chondral/osteochondral defects. All patients were treated by arthrotomic implantation of an aragonite based-scaffold by a press-fit technique. Patients were prospectively evaluated by IKDC, Tegner, Lysholm and KOOS scores preoperatively and then at 6, 12, 18 and 24-months follow-up. MRI was also performed to evaluate the amount of defect filling by regenerated cartilage. Failures were defined as the need for re-intervention in the index knee within the follow-up period. RESULTS: Average defect size was 2±1.3 cm2 and in most cases a single scaffold was used. A significant improvement in each clinical score was recorded from basal level to 24 months’ follow-up. In particular, the IKDC subjective score increased from 42.14±16 to 70.94±24.69 and the Tegner score improved from 2.95±1.90 to 4.82±1.85 (p<0.0005). Lysholm score and all the subscales of KOOS showed a similar trend over time. Age of the patient at implantation, size of the defect and BMI were correlated with lower clinical outcome. The presence of OA didn’t influence the clinical results. MRI evaluation showed a significant increase in defect filling over time, with the highest value reached at 24 months. Failures occurred in eleven patients (8.7%). CONCLUSION: The aragonite-based biomimetic osteochondral scaffold proved to be safe, and encouraging clinical and radiographic outcomes were documented up to 2 years’ follow-up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’ingegneria dei tessuti molli, quali il miocardio, sta sempre più emergendo come approccio alternativo alle terapie tradizionali. In questo ambito, i poliesteri costituiscono una classe di polimeri promettente, poiché le variegate strutture chimiche che li caratterizzano permettono di soddisfare un’ampia gamma di esigenze. Negli ultimi anni, l’attenzione della ricerca si è incentrata sul poli(butilene succinato)(PBS). Il PBS, tuttavia, possiede proprietà meccaniche non ottimali per l’ingegneria dei tessuti molli; inoltre i tempi di degradazione sono lunghi; ciò è dovuto al grado di cristallinità e all’idrofobicità, entrambi elevati. Nell’ottica di migliorare le proprietà non soddisfacenti di tale omopolimero, sono stati sintetizzati e caratterizzati nuovi copoliesteri alifatici a base di PBS biocompatibili e biodegradabili. In particolare, sono stati realizzati un copolimero a blocchi e uno statistico a base di Pripol 1009, un diacido commerciale (Croda), e un copolimero a blocchi a base di neopentil glicole, valutando sia l’effetto del tipo di comonomero introdotto nel PBS (Pripol 1009 vs. neopentil glicole) che quello dell’architettura molecolare (copolimero statistico vs. copolimero multiblocco). I materiali sintetizzati sono stati processati in forma di film attraverso pressofusione e di scaffold tramite elettrofilatura. Oltre alla caratterizzazione molecolare, film e scaffold sono stati sottoposti anche ad analisi termica, diffrattometrica, meccanica e a studi di degradazione idrolitica in condizioni fisiologiche. I risultati ottenuti hanno evidenziato la possibilità di modulare sia le proprietà meccaniche che la velocità di degradazione in condizioni fisiologiche. Tutti i copolimeri, infatti, presentano caratteristiche di elastomeri termoplastici e dei profili di degradazione variabili rispetto all’omopolimero, che li rendono adatti per applicazioni nel campo dell’ingegneria dei tessuti molli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'ingegneria tissutale è una branca delle scienze biomediche che negli ultimi anni si sta sviluppando come mezzo risolutivo per numerose problematiche mediche. Un'applicazione di particolare importanza è il trattamento di patologie cardiovascolari, le quali sono una delle principali cause di morte nel mondo. La mancanza di tessuto autologo e i problemi legati alle terapie cardiache, hanno incentivato numerosi studi basati sulla ricerca di biomateriali adeguati alla realizzazione di tessuti sintetici sostitutivi. In questo ambito, il polibutilene succinato (PBS) riveste sicuramente un ruolo importante. La sua biocompatibilità insieme alla biodegradabilità, non sono però sufficienti a renderlo idoneo ad applicazioni miocardiche, a causa dell’elevata rigidità. Allo scopo di migliorare le proprietà meccaniche del PBS nell’ottica di un’applicazione nel campo della rigenerazione del tessuto cardiaco, ma senza andare a detrimento delle proprietà già buone, il presente lavoro di Tesi propone un nuovo copolimero a base di PBS. Tale materiale è stato ottenuto tramite reazione di estensione di catena di un blocco hard (PBS) e un blocco soft (costituito da un copolimero statistico P(BSNS)). Il materiale ottenuto è stato analizzato sia sottoforma di film che di scaffold. Dopo una prima caratterizzazione molecolare (1H-NMR e GPC), il copolimero multiblocco è stato sottoposto anche ad analisi termica (DSC e TGA), diffrattometrica (WAXS) e meccanica. Si è evidenziato un miglioramento della stabilità termica e soprattutto una diminuzione del modulo elastico unitamente all’aumento dell’allungamento a rottura, in particolare nello scaffold. E’ stata inoltre valutata la velocità di degradazione idrolitica, evidenziandone una riduzione rispetto all’omopolimero. I risultati ottenuti confermano il miglioramento delle proprietà non soddisfacenti del PBS, indicando il copolimero multiblocco, oggetto della presenti Tesi, come materiale più idoneo alle applicazioni sopracitate.