974 resultados para CHOLINERGIC MODULATION
Resumo:
The emission wavelength of a GaInNAs quantum well (QW) laser was adjusted to 1310 nm, the zero dispersion wavelength of optical fibre, by an appropriate choice of QW composition and thickness and N concentration in the barriers. A triple QW design was employed to enable the use of a short cavity with a small photon lifetime while having sufficient differential gain for a large modulation bandwidth. High speed, ridge waveguide lasers fabricated from high quality material grown by molecular beam epitaxy exhibited a damped modulation response with a bandwidth of 13 GHz.
Resumo:
We present the fabrication of 1.3 mu m waveband p-doped InAs quantum dot (QD) vertical cavity surface emitting lasers (VCSELs) with an extremely simple process. The continuous-wave saturated output power of 1.1 mW with a lasing wavelength of 1280 nm is obtained at room temperature. The high-speed modulation characteristics of p-doped QD VCSELs of two different oxide aperture sizes are investigated and compared. The maximum 3 dB modulation bandwidth of 2.5 GHz can be achieved at a bias current of 7 mA for a p-doped QD VCSEL with an oxide aperture size of 10 mu m in the small signal frequency response measurements. The crucial factors for the 3 dB bandwidth limitation are discussed according to the parameters' extraction from frequency response.
Resumo:
We propose a silicon ring-based optical modulation method to perform chirp-free optical modulations. In this scheme, we locate the light to be modulated at the resonance of the ring and tune the coupling coefficient between the ring and the straight waveguide by using a push-pull coupling structure. The chirp-free phase modulation can be achieved by varying the coupling coefficient in a large range, which can modify the coupling condition of the ring such that the input light experiences an abrupt phase shift of pi at the output. If the coupling coefficient is adjusted in a small range such that the coupling condition of the ring is kept unchanged, only the intensity of the light will be modulated. This leads to chirp-free intensity modulation. Our simulations performed at 10 Gbits/s confirm the feasibility of the proposal. (C) 2009 Optical Society of America
Resumo:
1.5 mu m. n-type modulation-doping InGaAsP/InGaAsP strained multiple quantum wells grown by low pressure metalorganic chemistry vapor decomposition technology is reported for the first time in the world. N-type modulation-doped lasers exhibit much lower threshold current densities than conventional lasers with undoped barrier layers. The lowest threshold current density we obtained was 1052.5 A/cm(2) for 1000 mu m long lasers with seven quantum wells. The estimated threshold current density for an infinite cavity length was 94.72A/cm(2)/well, reduced by 23.3% compared with undoped barrier lasers. The n-type modulation doping effects on the lasing characteristics in 1.5 mu m devices have been demonstrated.
Resumo:
An extended subtraction method of scattering parameters for characterizing laser diode is proposed in this paper. The intrinsic response is extracted from the measured transmission coefficients of laser diode, and the parasitics of packaging net-work laser chip are determined from the measured reflection coefficient of laser diode simultaneously. It is shown that the theories agree well with the experimental results.
Resumo:
The modulation of superlattice band structure via periodic delta-doping in both well and barrier layers have been theoretically investigated, and the importance of interaction between the delta-function potentials in the well layers and those in the barrier layers on SL band structure have been revealed. It is pointed out that the energy dispersion relation Eq. (3) given in [G. Ihm, S.K. Noh, J.I. Lee, J.-S. Hwang, T.W. Kim, Phys. Rev. B 44 (1991) 6266] is an incomplete one, as the interaction between periodic delta-doping in both well and barrier layers had been overlooked. Finally, we have shown numerically that the electron states of a GaAs/Ga0.7Al0.3As superlattice can be altered more efficiently by intelligent tuning the two delta-doping's positions and heights. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Based on silicon-on-insulator (SOI) technology, a Mach-Zehnder interferometer (MZI) is fabricated, in which two directional couplers serve as power splitter and combiner. The free carrier plasma dispersion effect of Si is adopted to achieve the phase modulation and the consequent intensity modulation of optical fields. The device presents an insertion loss of 2.61 dB and an extinction ratio of 19.6 dB. The rise time and fall time are 676 ns and 552 ns, respectively. Detailed analysis and explanation of the performance behaviors are also presented. (c) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A novel and simple method for measuring the chirp parameter, frequency, and intensity modulation indexes of directly modulated lasers is proposed in a small-signal modulation scheme. A graphical approach is presented. An analytical solution to the measurement of low chirp parameters is also given. The measured results agree well with those obtained using the conventional methods.
Resumo:
Semiconductor optical amplifiers (SOAs) with n-type modulation-doped multiple quantum well structure have been investigated. The shortened carrier lifetime is derived from the PL spectrum and electrical modulation frequency response measurement. The carrier lifetime in semiconductor optical amplifiers with any n-type-2-modulated doping multiple quantum well structure is less than 60% of that in the undoped partner. The shortest measured carrier lifetime of 236 ps in the MD-MQW SOA with sheet carrier density of 3 x 10(12) cm(-2) was only 38% of that in the undoped MQW SOA, which can increase the wavelength conversion efficiency via four wave mixing by a factor of about 7 and switching speed via XGM and XPM applications by a factor of 2.63.
Resumo:
The authors report the self-organized growth of InAs/InAlAs quantum wires on nominal (001) InP substrate and (001) InP substrates misoriented by 2 degrees, 4 degrees, and 8 degrees towards both [-110] and [110]. The influence of substrate misorientation on the structural and optical properties of these InAs/InAlAs quantum wires is studied by transmission electron microscopy and photoluminescence measurements. Compared with that grown on nominal (001) InP substrate, the density of InAs/InAlAs quantum wires grown on misoriented InP(001) substrates is enhanced. A strong lateral composition modulation effect take place in the InAlAs buffer layers grown on misoriented InP substrates with large off-cut angles (4 degrees and 8 degrees), which induces a nucleation template for the first-period InAs quantum wires and greatly improve the size distribution of InAs quantum wires. InAs/InAlAs quantum wires grown on InP (001) substrate 8 degrees off cut towards [-110] show the best size homogeneity and photoluminescence intensity. (c) 2007 American Institute of Physics.
Resumo:
Some important parameters, such as gain, 3 dB bandwidth and threshold current of 1.3 mu m quantum dot vertical-cavity surface-emitting laser (QD VCSEL) are theoretically investigated. Some methods are developed to improve the VCSEL's modulation response. Significant improvement are prediced for p-type modulation doping. In connection with the threshold characteristic, we found that a structure with short cavity, multilayer quantum dots stack, p-type modulation doping and double intracavity contact on an un-doped DBR is much better suited to high speed quantum dot VCSELs. The parasitic effects of the VCSEL are,analyzed and the influence of packaging of the VCSEL on its modulation responds is analyzed.
Resumo:
Modulation arms with different widths are introduced to Mach-Zehnder interferometers (MZIs) to obtain improved performance. Theoretical analysis and numerical simulation have shown that when the widths of the two arms are properly designed to achieve an inherent m pi/2 (m is an odd integer) optical phase difference between the arms, the asymmetric MZI presents higher modulation speed. Furthermore, the carrier-absorption induced divergence of insertion losses in silicon-on-insulator (SOI) based MZI optical switches can be obviously improved.
Resumo:
1.5 mu m n-type InGaAsP/InGaAsP modulation-doped multiple quantum well (MD-MQW) DFB lasers have been fabricated successfully by low pressure metal organic chemical vapour deposition (LP-MOCVD) technology. The experimental results indicate that n-type MD-MQWs can effectively reduce the threshold Current compared with conventional multiple quantum well DFB lasers. Theoretical analysis indicates that such an effect is due to the much smaller absorption loss and lower Auger recombination, compared with that in an undoped MQW structure. Moreover, the introduction of n-type dopant of suitable levels of concentration in the barrier layers enhances the dynamic characteristics of DFB lasers, due to a coupling between the adjacent quantum well layers and tunnelling-assisted injection, which can reduce the relatively long capture time and increase the effective differential gain 1/X dG/dn .
Resumo:
We obtained the high mobility Of mu(2K) = 1.78 x 10(6) cm(2)/V . s in Si-doped GaAs/AlGaAs two-dimensional electron gas (2DEG) structures. After the sample was illuminated by a light-emitting diode in magnetic fields up to 6 T at T = 2K, we did observe the persistent photoconductivity effect and the electron density increased obviously. The electronic properties of 2DEG have been studied by Quantum-Hall-effect and Shubnikov-de Haas (SdH) oscillation measurements. We found that the electron concentrations of two subbands increase simultaneity with the increasing total electron concentration, and the electron mobility also increases obviously after being illuminated. At the same time, we also found that the electronic quantum lifetime becomes shorter, and a theoretical explunation is given through the widths of integral quantum Hall plateaus.
Resumo:
This paper reports on the simulation of two 2 x 2 electrooptical switches with different modulation area structures in silicon-on-insulator (SOI). A two-dimensional (2D) semiconductor device simulation tool PISCES-II has been used to analyze the dc and transient behaviors of the two devices. The modeling results show that the switch with an N+-I-P+-I-N+ modulation structure has a much faster response speed than the device with a P+-I-N+ modulation structure, although the former requires slightly stronger injection power.