935 resultados para CATIONIC SURFACTANTS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four cationic ruthenium(II) complexes with the formula [Ru(eta(5)-C5H5)(PPh3)(2)](+), with L = 5-phenyl-1H-tetrazole (TzH) 1, imidazole (ImH) 2, benzo[1,2-b; 4,3-b'] dithio-phen-2-carbonitrile (Bzt) 3, and [5-(2-thiophen-2-yl)-vinyl]-thiophene-2-carbonitrile] (Tvt) 4 were prepared and characterized in view to evaluate their potentialities as antitumor agents. Studies by Circular Dichroism indicated changes in the secondary structure of ct-DNA. Changes in the tertiary structure of pBR322 plasmid DNA were also observed in gel electrophoresis experiment and the images obtained by atomic force microscopy (AFM) suggest strong interaction with pBR322 plasmid DNA; the observed decreasing of the viscosity with time indicates that the complexes do not intercalate between DNA base pairs. Compounds 1, 2, and 3 showed much higher cytotoxicity than the cisplatin against human leukaemia cancer cells (HL-60 cells).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work concerns a new synthesis approach to prepare niobium based SAPO materials with AEL structure and the characterization ofNb species incorporated within the inorganic matrixes. The SAPO-11 materials were synthesized with or without the help of a small amine, methylamine (MA) as co-template, while Nb was added directly during the preparation of the initial gel. Structural, textural and acidic properties of the different supports were evaluated by XRD, TPR, UV-Vis spectroscopy, pyridine adsorption followed by IR spectroscopy and thermal analyses. Pure and well crystalline Nb based SAPO-11 materials were obtained, either with or without MA, using in the initial gel a low Si content of about 0.6. Increasing the Si content of the gel up to 0.9 led to an important decrease of the samples crystallinity. Niobium was found to incorporate the AEL pores support as small Nb2O5 oxide particles and also as extra framework cationic species (Nb5+), compensating the negative charges from the matrix and generating new Lewis acid sites. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The assessment of surface water nanofiltration (NF) for the removal of endocrine disruptors (EDs) Nonylphenol Ethoxylate (IGEPAL), 4-Nonylphenol (NP) and 4-Octylphenol (OP) was carried out with three commercial NF membranes - NF90, NF200, NF270. The permeation experiments were conducted in laboratory flat-cell units of 13.2 x 10(-4) m(2) of surface area and in a DSS Lab-unit M20 with a membrane surface area of 0.036 m2. The membranes hydraulic permeabilities ranged from 3.7 to 15.6 kg/h/m(2)/bar and the rejection coefficients to NaCl, Na2SO4 and Glucose are for NF90: 97%, 99% and 97%, respectively; for NF200: 66%, 98% and 90%, respectively and for NF270: 48%, 94% and 84%, respectively. Three sets of nanofiltration experiments were carried out: i) NF of aqueous model solutions of NP, IGEPAL and OP running in total recirculation mode; ii) NF of surface water from Rio Sado (Settibal, Portugal) running in concentration mode; iii) NF of surface water from Rio Sado inoculated with NP, IGEPAL and OP running in concentration mode. The results of model solutions experiments showed that the EDs rejection coefficients are approximately 100% for all the membranes. The results obtained for the surface water showed that the rejection coefficients to natural organic Matter (NOM) are 94%, 82% and 78% for NF90, NF200 and NF 270 membranes respectively, with and without inoculation of EDs. The rejection coefficients to EDs in surface water with and without inoculation of EDs are 100%, showing that there is a fraction of NOM of high molecular weight that retains the EDs in the concentrate and that there is a fraction of NOM of low molecular weight that permeates through the NF membranes free of EDs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report within this paper the development of a fiber-optic based sensor for Hg(II) ions. Fluorescent carbon nanoparticles were synthesized by laser ablation and functionalized with PEG200 and N-acetyl-l-cysteine so they can be anionic in nature. This characteristic facilitated their deposition by the layer-by-layer assembly method into thin alternating films along with a cationic polyelectrolyte, poly(ethyleneimine). Such films could be immobilized onto the tip of a glass optical fiber, allowing the construction of an optical fluorescence sensor. When immobilized on the fiber-optic tip, the resultant sensor was capable of selectively detecting sub-micromolar concentrations of Hg(II) with an increased sensitivity compared to carbon dot solutions. The fluorescence of the carbon dots was quenched by up to 44% by Hg(II) ions and interference from other metal ions was minimal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The sorption of sulfamethoxazole, a frequently detected pharmaceutical compound in the environment, onto walnut shells was evaluated. Methods: The sorption proprieties of the raw sorbent were chemically modified and two additional samples were obtained, respectively HCl and NaOH treated. Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric (TG/DTG) techniques were applied to investigate the effect of the chemical treatments on the shell surface morphology and chemistry. Sorption experiments to investigate the pH effect on the process were carried out between pH 2 and 8. Results: The chemical treatment did not substantially alter the structure of the sorbent (physical and textural characteristics) but modified the surface chemistry of the sorbent (acid–base properties, point of zero charge—pHpzc). The solution pH influences both the sorbent’s surface charge and sulfamethoxazole speciation. The best removal efficiencies were obtained for lower pH values where the neutral and cationic sulfamethoxazole forms are present in the solution. Langmuir and Freundlich isotherms were applied to the experimental adsorption data for sulfamethoxazole sorption at pH 2, 4, and 7 onto raw walnut shell. No statistical difference was found between the two models except for the pH 2 experimental data to which the Freundlich model fitted better. Conclusion: Sorption of sulfamethoxazole was found to be highly pH dependent in the entire pH range studied and for both raw and treated sorbent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In man brain cancer is an aggressive, malignant form of tumour, it is highly infiltrative in nature, is associated with cellular heterogeneity and affects cerebral hemispheres of the brain. Current drug therapies are inadequate and an unmet clinical need exists to develop new improved therapeutics. The ability to silence genes associated with disease progression by using short interfering RNA (siRNA) presents the potential to develop safe and effective therapies. In this work, in order to protect the siRNA from degradation, promote cell specific uptake and enhance gene silencing efficiency, a PEGylated cyclodextrin (CD)-based nanoparticle, tagged with a CNS-targeting peptide derived from the rabies virus glycoprotein (RVG) was formulated and characterized. The modified cyclodextrin derivatives were synthesized and co-formulated to form nanoparticles containing siRNA which were analysed for size, surface charge, stability, cellular uptake and gene-knockdown in brain cancer cells. The results identified an optimised co-formulation prototype at a molar ratio of 1:1.5:0.5 (cationic cyclodextrin:PEGylated cyclodextrin:RVG-tagged PEGylated cyclodextrin) with a size of 281±39.72nm, a surface charge of 26.73±3mV, with efficient cellular uptake and a 27% gene-knockdown ability. This CD-based formulation represents a potential nanocomplex for systemic delivery of siRNA targeting brain cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromian spinels are common in the late Cretaceous alkali basalts of the Lisbon volcanic Complex in Portugal. They occur as unzoned inclusions in magnesian olivines of all basalt types and as large spectacularly zoned grains in the groundmass of porphyritic basalts. Microprobe analysis indicate complex cationic exchange in the groundmass zoned spinels due to simple peritectic reactions and in response to changing composition of the basalt liquid. The variation of cationic distribution in zoned chromian-Spinels, reflects very accurately the changing chemistry of the cooling silicate melt and the paragenetical relations of mineral oxides and silicates. Crystallization of initial chromian spinels occurred at T~1200°C and fO2~10-8.5 atm. earlier or contemporaneously with magnesian olivine. The titanomagnetite mantles of zoned chromian spinels crystallized at T~1200°C and much lower fO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The behavior of two cationic copper complexes of acetylacetonate and 2,2'-bipyridine or 1,10-phenanthroline, [Cu(acac)(bipy)]Cl (1) and [Cu(acac)(phen)]Cl (2), in organic solvents and ionic liquids, was studied by spectroscopic and electrochemical techniques. Both complexes showed solvatochromism in ionic liquids although no correlation with solvent parameters could be obtained. By EPR spectroscopy rhombic spectra with well-resolved superhyperfine structure were obtained in most ionic liquids. The spin Hamiltonian parameters suggest a square pyramidal geometry with coordination of the ionic liquid anion. The redox properties of the complexes were investigated by cyclic voltammetry at a Pt electrode (d = 1 mm) in bmimBF(4) and bmimNTf(2) ionic liquids. Both complexes 1 and 2 are electrochemically reduced in these ionic media at more negative potentials than when using organic solvents. This is in agreement with the EPR characterization, which shows lower A(z) and higher g(z) values for the complexes dissolved in ionic liquids, than in organic solvents, due to higher electron density at the copper center. The anion basicity order obtained by EPR is NTf2-, N(CN)(2)(-), MeSO4- and Me2PO4-, which agrees with previous determinations. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The acetohydroxamic acid synthesis reaction was studied using whole cells, cell-free extract and purified amidase from the strains of Pseudomonas aeruginosa L10 and A13 entrapped in a reverse micelles system composed of cationic surfactant tetradecyltrimethyl ammonium bromide. The specific activity of amidase, yield of synthesis and storage stability were determined for the reversed micellar system as well as for free amidase in conventional buffer medium. The results have revealed that amidase solutions in the reverse micelles system exhibited a substantial increase in specific activity, yield of synthesis and storage stability. In fact, whole cells from P. aeruginosa L10 and AI3 in reverse micellar medium revealed an increase in specific activity of 9.3- and 13.9-fold, respectively, relatively to the buffer medium. Yields of approximately 92% and 66% of acetohydroxamic acid synthesis were obtained for encapsulated cell free extract from P. aeruginosa L10 and A13, respectively. On the other hand, the half-life values obtained for the amidase solutions encapsulated in reverse micelles were overall higher than that obtained for the free amidase solution in buffer medium. Half-life values obtained for encapsulated purified amidase from P. aeruginosa strain L10 and encapsulated cell-free extract from P. aeruginosa strain AI3 were of 17.0 and 26.0 days, respectively. As far as the different sources biocatalyst are concerned, the data presented in this work has revealed that the best results, in both storage stability and biocatalytic efficiency, were obtained when encapsulated cell-free extract from P. aeruginosa strain AI3 at 14/0 of 10 were used. Conformational changes occurring upon encapsulation of both strains enzymes in reverse micelles of TAB in heptane/octanol were additionally identified by FTIR spectroscopy which clarified the biocatalysts performances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New cationic ruthenium(II) complexes with the formula [Ru(eta(5)-C5H5)(LL)(1-BuIm)] [Z], with (LL) = 2PPh(3) or DPPE, and Z = CF3SO3-, PF6-, BPh4-, have been synthesized and fully characterized. Spectroscopic and electrochemical studies revealed that the electronic properties of the coordinated 1-butylimidazole were clearly influenced by the nature of the phosphane coligands (LL) and also by the different counter ions. The solid state structures of the six complexes determined by X-ray crystallographic studies, confirmed the expected distorted three-legged piano stool structure. However the geometry of the 1-butylimidazole ligand was found considerably different in all six compounds, being governed by the stereochemistry of the mono and bidentate coligands (PPh3 or DPPE).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanate nanotubes (TNT) with different sodium contents have been synthesised using a hydrothermal approach and a swift and highly controllable post-washing processes. The influence of the sodium/proton replacement on the structural and morphological characteristics of the prepared materials was analysed. Different optical behaviour was observed depending on the Na+/H+ samples’ content. A band gap energy of 3.27±0.03 eV was estimated for the material with higher sodium content while a value of 2.81±0.02 eV was inferred for the most protonated material, which therefore exhibits an absorption edge in the near visible region. The point of zero charge of the materials was determined and the influence of the sodium content on the adsorption of both cationic and anionic organic dyes was studied. The photocatalytic performance of the TNT samples was evaluated in the rhodamine 6G degradation process. Best photodegradation results were obtained when using the most protonated material as catalyst, although this material has shown the lowest R6G adsorption capability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work uses surface imprinting to design a novel smart plastic antibodymaterial (SPAM) for Haemoglobin (Hb). Charged binding sites are described here for the first time to tailor plastic antibody nanostructures for a large size protein such as Hb. Its application to design small, portable and low cost potentiometric devices is presented. The SPAM material was obtained by linking Hb to silica nanoparticles and allowing its ionic interaction with charged vinyl monomers. A neutral polymeric matrix was created around these and the imprinted protein removed. Additional materials were designed in parallel acting as a control: a neutral imprinted material (NSPAM), obtained by removing the charged monomers from the procedure, and the Non-Imprinted (NI) versions of SPAM and NSPAM by removing the template. SEM analysis confirmed the surface modification of the silica nanoparticles. All materials were mixed with PVC/plasticizer and applied as selective membranes in potentiometric transduction. Electromotive force (emf) variations were detected only for selective membranes having a lipophilic anionic additive in the membrane. The presence of Hb inside these membranes was evident and confirmed by FTIR, optical microscopy and Raman spectroscopy. The best performance was found for SPAM-based selective membranes with an anionic lipophilic additive, at pH 5. The limits of detection were 43.8 mg mL 1 and linear responses were obtained down to 83.8 mg mL 1, with an average cationic slope of +40 mV per decade. Good selectivity was also observed against other coexisting biomolecules. The analytical application was conducted successfully, showing accurate and precise results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a novel surface Smart Polymer Antibody Material (SPAM) for Carnitine (CRT, a potential biomarker of ovarian cancer), tested for the first time as ionophore in potentiometric electrodes of unconventional configuration. The SPAM material consisted of a 3D polymeric network created by surface imprinting on graphene layers. The polymer was obtained by radical polymerization of (vinylbenzyl) trimethylammonium chloride and 4-styrenesulfonic acid (signaling the binding sites), and vinyl pivalate and ethylene glycol dimethacrylate (surroundings). Non-imprinted material (NIM) was prepared as control, by excluding the template from the procedure. These materials were then used to produce several plasticized PVC membranes, testing the relevance of including the SPAM as ionophore, and the need for a charged lipophilic additive. The membranes were casted over solid conductive supports of graphite or ITO/FTO. The effect of pH upon the potentiometric response was evaluated for different pHs (2-9) with different buffer compositions. Overall, the best performance was achieved for membranes with SPAM ionophore, having a cationic lipophilic additive and tested in HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer, pH 5.1. Better slopes were achieved when the membrane was casted on conductive glass (-57.4 mV/decade), while the best detection limits were obtained for graphite-based conductive supports (3.6 × 10−5mol/L). Good selectivity was observed against BSA, ascorbic acid, glucose, creatinine and urea, tested for concentrations up to their normal physiologic levels in urine. The application of the devices to the analysis of spiked samples showed recoveries ranging from 91% (± 6.8%) to 118% (± 11.2%). Overall, the combination of the SPAM sensory material with a suitable selective membrane composition and electrode design has lead to a promising tool for point-of-care applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulfadimethoxine (SDM) is one of the drugs, often used in the aquaculture sector to prevent the spread of disease in freshwater fish aquaculture. Its spread through the soil and surface water can contribute to an increase in bacterial resistance. It is therefore important to control this product in the environment. This work proposes a simple and low-cost potentiometric device to monitor the levels of SDM in aquaculture waters, thus avoiding its unnecessary release throughout the environment. The device combines a micropipette tip with a PVC membrane selective to SDM, prepared from an appropriate cocktail, and an inner reference solution. The membrane includes 1% of a porphyrin derivative acting as ionophore and a small amount of a lipophilic cationic additive (corresponding to 0.2% in molar ratio). The composition of the inner solution was optimized with regard to the kind and/or concentration of primary ion, chelating agent and/or a specific interfering charged species, in different concentration ranges. Electrodes constructed with inner reference solutions of 1 × 10−8 mol/L SDM and 1 × 10−4 mol/L chromate ion showed the best analytical features. Near-Nernstian response was obtained with slopes of −54.1 mV/decade, an extraordinary detection limit of 7.5 ng/mL (2.4 × 10−8 mol/L) when compared with other electrodes of the same type. The reproducibility, stability and response time are good and even better than those obtained by liquid contact ISEs. Recovery values of 98.9% were obtained from the analysis of aquaculture water samples.