633 resultados para Bosonic Strings
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A U(2,2 vertical bar 4)-invariant A-model constructed from fermionic superfields has recently been proposed as a sigma model for the superstring on AdS(5) X S(5). After explaining the relation of this A-model with the pure spinor formalism, the A-model action is expressed as a gauged linear sigma model. In the zero radius limit, the Coulomb branch of this sigma model is interpreted as D-brane holes which are related to gauge-invariant N = 4 d=4 super-Yang-Mills operators. As in the worldsheet derivation of open-closed duality for Chem-Simons theory, this construction may lead to a worldsheet derivation of the Maldacena conjecture. Intriguing connections to the twistorial formulation of N = 4 Yang-Mills are also noted. (Republished with permission of JHEP from JHEP 0803:031, 2008.)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The superform construction of supersymmetric invariants, which consists of integrating the top component of a closed superform over spacetime, is reviewed. The cohomological methods necessary for the analysis of closed superforms are discussed and some further theoretical developments presented. The method is applied to higher-order corrections in heterotic string theory up to alpha'(3). Some partial results on N = 2, d = 10 and N = 1, d = 11 are also given.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We dimensionally reduce the ABJM model, obtaining a two-dimensional theory that can be thought of as a 'master action'. This encodes information about both T- and S-duality, i.e. describes fundamental (F1) and D-strings (D1) in 9 and 10 dimensions. The Higgsed theory at large VEV, (v) over tilde, and large k yields D1-brane actions in 9d and 10d, depending on which auxiliary fields are integrated out. For N = 1 there is a map to a Green-Schwarz string wrapping a nontrivial circle in C(4)/Z(k).
Resumo:
The spectrum of linearized excitations of the Type IIB SUGRA on AdS(5) x S-5 contains both unitary and non-unitary representations. Among the non-unitary, some are finite-dimensional. We explicitly construct the pure spinor vertex operators for a family of such finite-dimensional representations. The construction can also be applied to in finite-dimensional representations, including unitary, although it becomes in this case somewhat less explicit.
Resumo:
We briefly review the basic theoretical results on bosonic back-to-back correlations (bBBC) and compare our predictions with the first experimental search for squeezed correlations of K+K- pairs, performed by PHENIX. The hadronic squeezed correlations are very sensitive to the functional form of the time emission distribution. The comparison is made for three different kaon time distributions. From such comparison we show that the outcome of the experimental search may still be inconclusive but it does not exclude the existence of squeezing effects on hadrons with in-medium modified masses already at RHIC energies.
Resumo:
In the classical pure spinor worldsheet theory of AdS(5) x S-5 there are some vertex operators which do not correspond to any physical excitations. We study their flat space limit. We find that the BRST operator of the worldsheet theory in flat space-time can be nontrivially deformed without deforming the worldsheet action. Some of these deformations describe the linear dilaton background. But the deformation corresponding to the nonphysical vertex differs from the linear dilaton in not being worldsheet parity even. The nonphysically deformed worldsheet theory has nonzero beta-function at one loop. This means that the classical Type IIB SUGRA backgrounds are not completely characterized by requiring the BRST symmetry of the classical worldsheet theory; it is also necessary to require the vanishing of the one-loop beta-function.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Chameleons are scalar fields that couple directly to ordinary matter with gravitational strength, but which nevertheless evade the stringent constraints on tests of gravity because of properties they acquire in the presence of high ambient matter density. Chameleon theories were originally constructed in a bottom-up, phenomenological fashion, with potentials and matter couplings designed to hide the scalar from experiments. In this paper, we attempt to embed the chameleon scenario within string compactifications, thus UV completing the scenario. We look for stabilized potentials that can realize a screening mechanism, and we find that the volume modulus rather generically works as a chameleon, and in fact the supersymmetric potential used by Kachru, Kallosh, Linde and Trivedi (KKLT) is an example of this type. We consider all constraints from tests of gravity, allowing us to put experimental constraints on the KKLT parameters.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)